跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎泰慶全
研究生(外文):Le Thai Khanh Toan
論文名稱:預熱爐三維熱傳的模擬分析
論文名稱(外文):Modelling and Simulation of Tree-Dimensional HeatTransfer in Reheating Furnace
指導教授:楊勝安楊勝安引用關係
指導教授(外文):Sheng-An Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:83
中文關鍵詞:加溫爐熱傳送幅射傳導數據
外文關鍵詞:Heating FurnaceNumerical Heat transferradiationconvection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:603
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
模擬加熱熔爐對庫存品的性質及最後顯微組織有很重要的預告。
此研究提供鋼鐵在再加溫熔爐內溫度不變情況下的技術數據。這項工
作完成熱的幅射及傳送的分析,而最大部份是來自熔爐內頂部、牆及
瓦斯的燃燒。
使用有限容積方法對金屬模型以3D 傳導提供短暫的熱轉換。從
有限的範圍內將幅射熱通量及傳導熱通量計算出相互關係。一個包含
對熱幅射、傳送及輸送從頭到尾做全面論述。
本研究採用推式熔爐做模型。此模型可將鋼鐵庫存品任何特殊合
成物在熔爐狀況及物品尺寸在整個再加溫程序做各溫度領域的預報。
The simulation of reheating furnace is of great importance for prediction and
control of ultimate microstructure and properties of stocks. This study applies a
numerical technique for calculating the non-stationary temperature field in rectangular
stocks of steel heated in a reheating furnace. The work performs a radiation and
convection heat transfer analysis, but a major part of heat transfer in the furnace
chamber is due to radiation from the roofs, walls and combustion gases.
Transient 3D conduction heat transfer within the metal part is modeled by using
a Finite volume method (FVM) based code. Radiation heat flux from the radiative and
convective heat flux is calculated by using existing correlations as boundary condition
for the conduction model. A global iteration involving the radiation, convection model
and the conduction model is carried out for the overall solution.
The study chose the pusher-type furnace for modelling. The model can predict
the temperature field in stocks of steel in the whole reheating process for any particular
combination of furnace conditions and load dimensions.
Contents
Abstract ---------------------------------------------------------------------- I
Acknowledgments ---------------------------------------------------------------------- II
Contents ---------------------------------------------------------------------- IV
List of Figures ---------------------------------------------------------------------- VI
Nomenclature ---------------------------------------------------------------------- VIII
Chapter 1. Introduction ------------------------------------------------------ 1
1-1. Introduction to Reheating Furnace ---------------------------- 1
1-2. Heat transfer in a furnace --------------------------------------- 6
1-3.
Role of computational modelling in Reheating furnace
design and analysis ----------------------------------------------
8
1-4. Review of Literature -------------------------------------------- 9
1-4-1 Literature on Reheating Furnace Modelling ----------------- 9
1-4-2 Literature on Radiation Heat Transfer Modelling ---------- 12
1-5. The Objective of the Thesis ------------------------------------ 13
1-6. Layout of the Thesis -------------------------------------------- 14
Chapter 2. Mathematical Modelling --------------------------------------- 16
2-1. Description of the problem ------------------------------------- 16
2-2. Governing equation --------------------------------------------- 18
2-3. Calculation of Radiative Heat Flux --------------------------- 19
2-4. Calculation of Convective Heat Flux ------------------------- 23
2-5. Boundary and initial condition for the load ------------------ 24
Chapter 3. Computational Modelling ------------------------------------- 26
3-1. Formulation of discretization equation for conduction ----- 26
3-2. Formulation of discretization equation for boundary
condition ----------------------------------------------------------
30
3-2-1. Discretization equation for surface boundary conditions -- 31
IV
3-2-2. Discretization equation for edge boundary conditions ----- 34
3-2-3. Discretization equation for corner boundary conditions --- 35
Chapter 4. Computational implements ------------------------------------ 37
4-1. Overall methodology ------------------------------------------- 37
4-2. Solving the simultaneous linear algebraic equations ------- 39
Chapter 5. Result and Discussion ------------------------------------------ 44
5-1. Results for Pusher type furnace (without skid pipes) ------- 44
5-2. Results for Pusher type furnace (with skid pipes)----------- 56
Chapter 6. Conclusion ------------------------------------------------------- 62
6-1 Concluding remarks --------------------------------------------- 62
6-2 Future Works ---------------------------------------------------- 63
References ---------------------------------------------------------------------- 65
V
References
[1] V.A. Krivandin, and B. L. Markov, “Metallurgical Furnaces”, Mir
Publishers” (1980).
[2] K.S. Chapman, S. Ramadhyani, R. Viskanta, “Modeling and
Parametric Studies of Heat Transfer in a Direct-Fired Continuous
Reheating Furnace”, Metallurgical Transactions B. vol. 22B, pp.
513-521 (1991).
[3] S. P. Gerasimov, S. Yu. Efroimovich, M. D. Klimovitskii, and V. N.
Khloponin, “Stastical Modelling of Heating of Metal in Conveyor
Furnaces Taking into account Heating Atmosphere Temperature
Profile” Steel in the USSR, vol. 14, pp.461-462 (1984).
[4] J. J. Hwang, “Dynamic Simulation and Heat Transfer Analysis of
Reheating Furnace,” Master Thesis, National Sun Yat-Sen
University (1995).
[5] J. Kang, and Y. Rong, “Modeling and simulation of load heating in
heat treatment furnaces,” J. of Material Processing Technology,
Vol.174, pp.109-114 (2006).
[6] D. Lindholm and B. Leden, “A Finite Element Method for Solution of
the three-dimensional time-dependent heat conduction equation with
application for heating of steels in reheating furnaces ” Taylor &
Francis, Numerical Heat Transfer, Part A,, Vol.35, pp.155-172
(1999).
65
[7] P. Marino, and A. Pignotti, “On-line Model for Controlling an
Industrial Rotary Reheating Gas Furnace” Proceedings of The 4th
European Conference on Industrial Furnaces and Boilers, (April
1988).
[8] A. Jaklie, F. Vode, T. Kolenko, “Online simulation model of the slabreheating
process in a pusher-typer furnace” Applied Thermal
Engineering, Vol.27, pp.1105-1114 (2007).
[9] A. Jaklie, B. Glogovac, T. Kolenko, B. Zupancic, and B. Tezak, “A
simulation of heat transfer during billet transport,” Applied Thermal
Engineering, Vol. 22, pp.873-883 (2002).
[10] B. Zhang, Z. Chen, L. Xu, J. Wang, B. Zhang, H. Shao, “The
Modeling and Control of A Reheating Furncace,” Proceeding of the
American Control Conference. Anchorage, AK May 8-10, (2002).
[11] E. B. Ratts, “A Study of the Radiant Heat Exchange within a
Controlled Atmosphere Furnace” Heat Transfer Engineering Vol.
20, pp.55-64 (2000).
[12] H. C. Hottel, and E. S. Cohen, “Radiant Heat Exchange in Gas-Filled
Enclosure” Journal of American Institute of Chemical Engineers
Vol. 4, pp.3 (1958).
[13] J. R. Howell, and M. Perlmutter, “Monte Carlo Solution of Thermal
Transport Through Radiant Media between Gray Walls,”
Transactions of the ASME, Journal of Heat Transfer, Vol. 86, No.
1, pp. 116-122 (1964).
66
[14] S. H. Hong, and J. R. Welty, “Monte Carlo Simulation of Radiantion
Heat Transfer in A Three-Dimensional Enclosure Containing A
Circular Cylinder,” Numerical Heat Transfer, Part A Vol. 36,
pp.395-409 (1999).
[15] A. T. Luca, M. Senarega, “A Simulation Code for Batch Heat
Treatments,” Int. J. of Thermal Sciences, Vol. 43, pp.509-517
(2004).
[16] J. G. Kim, K. Y. Huh, “Three Dimensional Analysis of The Walking
Beam Type Slab Reheating Furnace in Hot Strip Mills” Numerical
Heat Transfer, Part A, Vol. 38, pp.589-609 (2000).
[17] Jaklie, A., Kolenko, T., Zupaneie, B., “Influence of space between the
billets on the productivity of continuous walking beam furnace”
Applied Thermal Engineering, Vol. 25, pp.783-795 (2005).
[18] J. P. Holman, “Heat Transfer”, 7th Edition, McGraw-Hill, (1990).
[19] A. F. Sarofim, and H. C. Hottel, “Radiative Transfer”, Mcgraw-Hill
Book Co. LTD, New York, (1972).
[20] Suhas V. Patankar, “Numerical Heat Transfer and Fluid Flow”,
Hemisphere Publishing Co., (1980).
[21] Hoyt C. Hottel, “Radiative Transfer”, McGraw-Hill, (1967).
[22] R. Siegel, J. R. Howell “Thermal Radiation Heat Transfer”, 3th
Edition, Hemisphere Publishing Co., (1992).
[23] S. S. Rao, “Applied Numerical Methods for Engineers and Scientists,
Prentice Hall (2002)
67
[24] Sri Sakol Metal Co.,LTD., “Technical Proposal of 50T/Hr Top Fired
Pusher Type Reheating Furnace” (1995)
[25] R. J. Reed, “ North American Combustion Handbook”, Second
Edition, North American Mfg. Co. (1983)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top