跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林士傑
研究生(外文):Shih-Chieh Lin
論文名稱:小型陶瓷天線的設計
論文名稱(外文):Design of Miniature Ceramic Antenna
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):Hua-Ming ChenYi-Fang Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:119
中文關鍵詞:介質負載介質激發介質共振寄生槽孔晶片型圓極化超寬頻無線區域網路手機
外文關鍵詞:HEMDEADRADLAceramicCPUWBWLANhandset
相關次數:
  • 被引用被引用:0
  • 點閱點閱:745
  • 評分評分:
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主要為高介電常數的陶瓷天線之設計,利用陶瓷的高介電常數、低介質損耗以及共振輻射等特性,製作出介質負載天線、介質激發天線和介質共振天線三種不同類型的高介電常數天線。第二章與第三章中利用高介電常數介質負載特性,分別製作出適用於超寬頻(UWB)通訊頻段及新穎激發方式的圓極化晶片型陶瓷天線,此部分的天線提供了輕巧、可表面黏著、寬頻操作與輻射效果佳的優良特性,在實際應用層面上更具有競爭優勢。第四章介質激發天線,以陶瓷介質的共振輻射作為激發源,激發設計獨特的平面倒L型天線,使倒L型天線具有多頻段的操作並達到縮小化的效果,具有應用在手機天線上的優勢。最後,在第五章中,製作以混合式寄生槽孔微帶線激發的介質共振天線,使陶瓷介質與寄生槽孔同時產生共振,獲得雙頻段操作的介質共振天線,並適用於IEEE 802.11 a/b/g等使用頻段,此部份寄生槽孔具有能夠與介質共振天線互相影響,並可加以控制優點,使天線在設計上更能增加設計自由度。
The main of research study in dielectric antenna which have high permittivity for a application of mobile communication in this thesis. Three different types of high dielectric constant antenna, dielectric loaded antenna, dielectric excited antenna and dielectric resonator antenna, are investigated and designed. In chapter 2 and chapter 3, proposed a compact and surface-mounted chip antenna which is dielectric loaded antenna. These antennas had excellent performance and circular polarization design respectively. The proposed of antenna design had operate frequency band for application of UWB (Ultra Wideband Band) communication in chapter 3. In the other hand, the design of dielectric excited antenna is in chapter 4. The parasitic copper PILA (Planar Inverted-L Antenna) is excited by dielectric resonator antenna to achieve multi-frequency operation. The finally, hybrid resonance of a dielectric resonator antenna with parasitic slot is investigated experimentally in Chapter 4.
目 錄

中文摘要 ---------------------------------------------------------------- i
英文摘要 ---------------------------------------------------------------- ii
誌謝 ---------------------------------------------------------------- iii
目錄 ---------------------------------------------------------------- iv
表目錄 ---------------------------------------------------------------- vi
圖目錄 ---------------------------------------------------------------- vii
第一章 序論---------------------------------------------------------- 1
1.1 研究背景---------------------------------------------------- 1
1.2 研究目的---------------------------------------------------- 3
1.3 高介電常數天線簡介------------------------------------- 4
1.4 研究內容---------------------------------------------------- 5
第二章 陶瓷介質負載雙環形超寬頻單極天線設計---------- 7
2.1 前言---------------------------------------------------------- 7
2.2 設計原理---------------------------------------------------- 9
2.3 天線設計---------------------------------------------------- 13
2.4 結果與討論------------------------------------------------- 17
2.5 結論---------------------------------------------------------- 30
第三章 陶瓷介質負載環形圓極化微帶天線設計------------- 31
3.1 前言---------------------------------------------------------- 31
3.2 設計原理---------------------------------------------------- 34
3.3 天線設計---------------------------------------------------- 38
3.4 結果與討論------------------------------------------------- 42
3.5 結論---------------------------------------------------------- 57
第四章 陶瓷介質激發倒L型手機天線設計------------------- 58
4.1 前言---------------------------------------------------------- 58
4.2 設計原理---------------------------------------------------- 60
4.3 天線設計---------------------------------------------------- 63
4.4 結果與討論------------------------------------------------- 67
4.5 結論---------------------------------------------------------- 80
第五章 混合式寄生槽孔微帶線激發介質共振天線設計---- 81
4.1 前言---------------------------------------------------------- 81
4.2 設計原理---------------------------------------------------- 82
4.3 天線設計---------------------------------------------------- 87
4.4 結果與討論------------------------------------------------- 92
4.5 結論---------------------------------------------------------- 107
第五章 結論與未來發展------------------------------------------- 108
參考文獻 ---------------------------------------------------------------- 111







表 目 錄

表1.1 無線區域網路與藍芽標準-------------------------------------- 2
表1.2 行動電話通訊系統名稱以及使用頻段----------------------- 2
表1.3 超寬頻無線通訊與全球衛星定位使用標準----------------- 3
表2.1 陶瓷雙環形超寬頻天線尺寸----------------------------------- 11
表2.2 圖2.6實驗值與模擬值之比較--------------------------------- 20
表3.1 陶瓷環形圓極化天線尺寸-------------------------------------- 40
表3.2 圖3.5實驗值與模擬值之比較--------------------------------- 45
表4.1 介質激發倒L型天線尺寸-------------------------------------- 65
表4.2 圖4.4實驗值與模擬值之比較--------------------------------- 70
表5.1 典型微帶線饋入介質共振天線尺寸-------------------------- 89
表5.2 混合式介質共振天線尺寸-------------------------------------- 90
表5.3 圖5.10實驗值與模擬值之比較-------------------------------- 98











圖 目 錄

圖1.1 高介電常數天線分類圖----------------------------------------- 5
圖2.1 偶極與單極天線電流分佈圖 (a)偶極天線 (b)單極天線- 9
圖2.2 圓柱體架構圖----------------------------------------------------- 11
圖2.3 修改接地面結構之等效等路圖-------------------------------- 13
圖2.4 陶瓷雙環形超寬頻天線結構圖-------------------------------- 15
圖2.5 陶瓷雙環形超寬頻天線實體圖-------------------------------- 16
圖2.6 陶瓷雙環形超寬頻天線實驗與模擬電壓駐波比(VSWR)比較圖-------------------------------------------------------------- 20
圖2.7 陶瓷雙環形超寬頻天線表面電流分佈圖 (a) f = 3070 MHz (b) f = 4250 MHz------------------------------------------- 21
圖2.7 陶瓷雙環形超寬頻天線表面電流分佈圖 (c) f = 7050 MHz (d) f = 9400 MHz------------------------------------------- 22
圖2.8 陶瓷雙環形超寬頻天線未修改接地面改變環形內徑模擬VSWR比較圖------------------------------------------------- 23
圖2.9 陶瓷雙環形超寬頻天線改變陶瓷介電係數模擬VSWR比較圖-------------------------------------------------------------- 23
圖2.10 陶瓷雙環形超寬頻天線改變接地面梯形寬度W1模擬VSWR比較圖----------------------------------------------------- 24
圖2.11 陶瓷雙環形超寬頻天線改變接地面梯形高度H1模擬VSWR比較圖----------------------------------------------------- 24
圖2.12 陶瓷雙環形超寬頻天線實測増益圖,f = 3950 ~ 5850 MHz-----------------------------------------------------------------
25
圖2.13 陶瓷雙環形超寬頻天線實測増益圖,f = 5850 ~ 8050 MHz----------------------------------------------------------------- 25
圖2.14 陶瓷雙環形超寬頻天線實測増益圖,f = 8200 ~ 10900 MHz----------------------------------------------------------------- 26
圖2.15 陶瓷雙環形超寬頻天線輻射場型圖,f = 4250 MHz------ 27
圖2.16 陶瓷雙環形超寬頻天線輻射場型圖,f = 7050 MHz------ 28
圖2.17 陶瓷雙環形超寬頻天線輻射場型圖,f = 9400 MHz------ 29
圖3.1 耦合線饋入架構圖----------------------------------------------- 34
圖3.2 內藏式帶線饋入架構圖----------------------------------------- 35
圖3.3 各種TM mode波模分佈圖------------------------------------- 36
圖3.4 陶瓷環形圓極化天線結構圖----------------------------------- 40
圖3.5 陶瓷環形圓極化天線實體圖----------------------------------- 41
圖3.6 陶瓷環形圓極化天線反射損耗圖----------------------------- 45
圖3.7 陶瓷環形圓極化天線史密斯圖(Smith Chart)--------------- 46
圖3.8 陶瓷環形圓極化天線模擬電相位(phase)變化圖----------- 46
圖3.9 陶瓷環形圓極化天線隨電相位改變之表面電流分佈圖 f = 2700 MHz (a)phase = 0o (b)phase = 45o (c)phase = 90o (d)phase = 135o---------------------------------------------------- 47
圖3.9 陶瓷環形圓極化天線隨電相位改變之表面電流分佈圖 f = 2700 MHz (e)phase = 180o (f)phase = 225o (g)phase = 270o (h)phase = 315o---------------------------------------------- 48
圖3.10 陶瓷環形圓極化天線模擬有無扇形金屬片反射損耗比較圖----------------------------------------------------------------- 49
圖3.11 陶瓷環形圓極化天線模擬有無扇形金屬片史密斯比較圖-------------------------------------------------------------------- 49
圖3.12 陶瓷環形圓極化天線電場分佈比較圖 (a)有扇形金屬片 (b)無扇形金屬片------------------------------------------------- 50
圖3.13 陶瓷環形圓極化天線隨饋入線長度Lf改變之反射損耗比較圖-------------------------------------------------------------- 51
圖3.14 陶瓷環形圓極化天線隨饋入線長度Lf改變之史密斯比較圖----------------------------------------------------------------- 51
圖3.15 陶瓷環形圓極化天線隨扇形金屬片角度改變之反射損耗比較圖----------------------------------------------------------- 52
圖3.16 陶瓷環形圓極化天線隨扇形金屬片角度改變之史密斯比較圖-------------------------------------------------------------- 52
圖3.17 陶瓷環形圓極化天線隨陶瓷介電常數r改變之反射損耗比較圖-------------------------------------------------------------- 53
圖3.18 陶瓷環形圓極化天線隨陶瓷介電常數r改變之史密斯比較圖----------------------------------------------------------------- 53
圖3.19 陶瓷環形圓極化天線隨陶瓷高度Hd改變之反射損耗比較圖----------------------------------------------------------------- 54
圖3.20 陶瓷環形圓極化天線隨陶瓷高度Hd改變之史密斯比較圖-------------------------------------------------------------------- 54
圖3.21 陶瓷環形圓極化天線實測軸比(Axial Ratio)圖,f = 2690 ~ 2700 MHz-------------------------------------------------------- 55
圖3.22 陶瓷環形圓極化天線實測增益圖,f = 2690 ~ 2700 MHz- 55
圖3.24 陶瓷環形圓極化天線輻射場型圖,f = 2700 MHz ---------- 56
圖4.1 圓柱介質共振體-------------------------------------------------- 60
圖4.2 介質激發倒L型天線結構圖----------------------------------- 65
圖4.3 介質激發倒L型天線實體圖----------------------------------- 66
圖4.4 介質激發倒L型天線反射損耗圖----------------------------- 70
圖4.5 介質激發倒L型天線表面電流分佈圖 (a)f = 930 MHz (b) f = 1800 MHz (c) f = 2440 MHz---------------------------- 71
圖4.6 介質激發倒L型天線隨陶瓷直徑D改變之反射損耗比較圖----------------------------------------------------------------- 72
圖4.7 介質激發倒L型天線隨陶瓷高度H改變之反射損耗比較圖----------------------------------------------------------------- 72
圖4.8 介質激發倒L型天線隨陶瓷介電常數r改變之反射損耗比較圖-------------------------------------------------------------- 73
圖4.9 介質激發倒L型天線實測增益圖,f = 950 ~ 965 MHz----- 73
圖4.10 介質激發倒L型天線實測增益圖,f = 1770 ~ 1840 MHz-- 74
圖4.11 介質激發倒L型天線實測增益圖,f = 2410 ~ 2465 MHz-- 74
圖4.12 介質激發倒L型天線輻射場型圖,f = 950 MHz------------ 75
圖4.13 介質激發倒L型天線輻射場型圖,f = 1800 MHz----------- 76
圖4.14 介質激發倒L型天線輻射場型圖,f = 2440 MHz----------- 77
圖4.15 介質激發倒L型天線模擬輻射效率圖,f = 925 ~ 940 MHz----------------------------------------------------------------- 78
圖4.16 介質激發倒L型天線模擬輻射效率圖,f = 1770 ~ 1860 MHz----------------------------------------------------------------- 78
圖4.17 介質激發倒L型天線模擬輻射效率圖,f = 2420 ~ 2470 MHz----------------------------------------------------------------- 79
圖5.1 圓柱介質共振體-------------------------------------------------- 82
圖5.2 典型HEM11模態在圓柱介質體之電磁場分佈情形 (a)電場分佈 (b)磁場分佈 (c)3維電磁場分佈----------------- 84
圖5.3 HEM11模態的激發與饋入機制之關係圖------------------- 85
圖5.4 典型微帶線饋入介質共振天線結構圖----------------------- 89
圖5.5 混合式介質共振天線結構圖----------------------------------- 90
圖5.6 混合式介質共振天線實體圖 (a)正面照 (b)背面照 (c)天線組合完成照-------------------------------------------------- 91
圖5.7 典型微帶線饋入介質共振天線隨饋入線長度Lf反射損耗圖----------------------------------------------------------------- 96
圖5.8 典型微帶線饋入介質共振天線增益圖,f = 5400 ~ 5800 MHz----------------------------------------------------------------- 96
圖5.9 典型微帶線饋入介質共振天線輻射場型圖,f = 5400 MHz----------------------------------------------------------------- 97
圖5.10 混合式介質共振天線反射損耗圖----------------------------- 98
圖5.11 混合式介質共振天線介質體電磁場分佈圖 (a)電場分佈 (b)磁場分佈------------------------------------------------------- 99
圖5.12 混合式介質共振天線表面電流分佈圖 (a)f = 2400 MHz (b) f = 5600 MHz-------------------------------------------------- 100
圖5.13 混合式介質共振天線隨寄生槽孔長度L1變化之模擬反射損耗比較圖----------------------------------------------------- 101
圖5.14 混合式介質共振天線隨寄生槽孔長度L2變化之模擬反射損耗比較圖----------------------------------------------------- 101
圖5.15 混合式介質共振天線隨寄生槽孔長度L3變化之模擬反射損耗比較圖----------------------------------------------------- 102
圖5.16 混合式介質共振天線隨陶瓷擺放位置S1變化之模擬反射損耗比較圖----------------------------------------------------- 102
圖5.17 混合式介質共振天線隨陶瓷高度Hd變化之模擬反射損耗比較圖----------------------------------------------------------- 103
圖5.18 混合式介質共振天線隨陶瓷介電常數r變化之模擬反射損耗比較圖-------------------------------------------------------- 103
圖5.19 混合式介質共振天線增益圖,f = 2350 ~ 2550 MHz------- 104
圖5.20 混合式介質共振天線增益圖,f = 5400 ~ 5800 MHz------- 104
圖5.21 混合式介質共振天線輻射場型圖,f = 2400 MHz---------- 105
圖5.22 混合式介質共振天線輻射場型圖,f = 5600 MHz---------- 106
參考文獻

[1]Antenova Limited, High Dielectric Antennas White Paper, Antenova Limited, January 2004.
[2]R. Chatterjee, Dielectric and Dielectric-Loaded Antennas, London, U.K.: Research Studies Press, 1985.
[3]Y. Dakaye, T. Suesada and K. Asakura, N. Nakajima and H. Mandai, “Chip multilayer antenna for 2.45GHz-band application using LTCC technology“, 2000 IEEE MTT-S Int. Symp. Dig., pp. 1693-1696, 2000.
[4]H. Matsushima, E. Hirose, Y. Shinohara, H. Arai and N. Goto, “Electromagneticall coupled dielectric chip antennas”, IEEE AP-S Int. Symp. Dig., Atlanta, GA, pp. 1954-1957, June 1998.
[5]W. Choi, S. Kwon and B. Lee, “Ceramic chip antenna using meander conductor lines”, Electronics Letters, vol. 37, pp. 933-934, 2001.
[6]J. Lee C. Jeon and B. Lee, “Design of ceramic chip antenna for Bluetooth applications using meander lines”, IEEE Antennas and Propagation Society International Symposium, vol. 4, pp.68-71, June 2002.
[7]C. T. Cheung, C. M. Liu, P. Sung, D. B. Rutledge, ”A novel dielectric loaded antenna for wireless applications”, 1999 IEEE AP-S Int. Symp. Dig., Orlando, FL, pp. 38-41, July 1999.
[8]M. Lapierre, Y. M. M. Antar, A. Ittipiboon and A. Petosa, “A wideband monopole antenna using dielectric resonator loading”, 2003 IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 16-19 , 22-27 June 2003.
[9]C.C. Chiau, X. Chen and C.G. Parini, "A miniature dielectric loaded folded half loop antenna and ground plane effects", IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 459- 462, 2005.
[10]G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[11]J. Liang, C.C. Chiau, X. Chen and C.G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications”, Electronics. Lett., vol. 40, No. 20, September 30, 2004.
[12]A. C. Lepage and X. Begaud “A compact ultra wideband triangular patch Antenna”, Microwave Opt. Technol. Lett. , Vol. 40, No. 4, February 20, 2004.
[13]Taeyoung Yang and William A. Davis, “Planar half-disk antenna structures for ultra wideband communications”, IEEE AP- Society Int. Symposium, Vol. 3, pp. 2508-2511, June 2004.
[14]N. Kuga and H. Arai, “Wideband crossed elliptical disk monopole antenna”, IEEE AP- Society Int. Symposium, Vol. 3, pp. 22-27, June 2003
[15]Xuan Hui Wu, Zhi Ning Chen, and Ning Yang, “Optimzation of planar diamond antenna for single-band and multiband UWB wireless communication”, Microwave Opt. Technol. Lett. , Vol. 42, No. 6, pp. 451-455, September 20, 2004.
[16]M. J. Ammann and Zhi Ning Chen, “A wide-band shorted planar monopole with bevel”, Antennas and Propagation, IEEE Transactions on , Vol.51 , pp. 901 – 903, Issue: 4 , April 2003.
[17]Y. Kim and D.H. Kwon, “CPW-fed planar ultra wideband antenna having a frequency band notch function," Electronics. Lett., vol. 40, No. 7, April 01, 2004.
[18]Aaron KerKhoff and Hao Ling “A parametric study of band-notched UWB planar monopole antennas" IEEE AP- Society Int. Symposium, Vol. 2, pp. 1768-1771, June 2004.
[19]Hans Gregory Schantz, Glenn Wolence, and Edward Mickel Myszka “Frequency notched UWB antennas"IEEE Conference, PP. 214 – 218, 2003
[20]Aaron Kerkhoff and Hao Ling “Design of a planar monopole antenna for use with ultra-wideband having a band-notched characteristic" IEEE APSociety Int. Symposium, Vol. 1, pp. 830-833, June 2003.
[21]Chen Ying, G. Y. Li, and Y. P. Zhang,“An LTCC planar ultra wideband antenna”, Microwave Opt. Technol. Lett. , Vol. 42, No. 3, pp. 220-222, August 5, 2004.
[22]Y. P. Zhang, T. K. C. Lo, Y. M. Hwang, “A dielectric-loaded miniature antenna for microcellular and personal communications”, Antennas and Propagation Society International Symposium, 1995. AP-S. Digest, vol. 2, pp. 1152-1155, 18-23 Jun 1995.
[23]J. George, C. K. Anandan, P. Mohan, K.G.Nair, H.Sreemoolanathan and M.T.Sebastian, “Dielectric resonator loaded microstrip antenna for enhanced impedance bandwidth and efficiency”, Microwave and Optical Tech. Lett., vol. 17, No. 3, pp. 205-207, Feb. 1998.
[24]V. GUPTA, S. SINHA, S. K. KOUL and B. BHAT, “Suspended microstrip patch antenna with dielectric resonator loading for enhanced bandwidth”, Microwave Conference, 2000 Asia-Pacific, pp. 1330-1334, 2000.
[25]Y. S. Wang; S. J. Chung, “Design of a dielectric-loaded quadrifilar helix antenna”, Antenna Technology Small Antennas and Novel Metamaterials, 2006 IEEE International Workshop on, pp. 229 - 232, March 6-8, 2006.
[26]T. W. Chiu, C. Wang, C. M. Su and K. L. Wong, “Surface-mountable dual side-feed circularly polarized ceramic chip antenna”, Electronic Materials and Packaging, pp. 434-437, Dec. 2002.
[27]C. L. Tang, J. H. Lu and K. L. Wong, "Circularly polarized equilateral-triangular microstrip antenna," Electron. Lett., vol. 34, pp. 1277-1278, June 25, 1998.
[28]J. H. Lu, C. L. Tang, and K. L. Wong, "Single-feed slotted equilateral-triangular microstrip antenna for circular polarization," IEEE Trans. Antennas Propagat., vol. 47, pp. 1174-1178, July 1999.
[29]J. H. Lu, C. L. Tang, and K. L. Wong, "Single-feed slotted equilateral-triangular microstrip antenna for circular polarization," IEEE Trans. Antennas Propagat., vol. 47, pp. 1174-1178, July 1999.
[30]K. L. Wong, W. H. Hsu and C. K. Wu, "Single-feed circularly polarized microstrip antenna with a slit," Microwave Opt. Technol. Lett., vol. 18, pp. 306-308, July 1998.
[31]K. L. Wong, W. H. Hsu and C. K. Wu, "Single-feed circularly polarized microstrip antenna with a slit," Microwave Opt. Technol. Lett., vol. 18, pp. 306-308, July 1998.
[32]J. H. Lu, C. L. Tang and K. L. Wong, "Circular polarization design of a single feed equilateral-triangular microstrip antenna," Electron. Lett., vol. 34, pp. 319-321, Feb. 19, 1998.
[33]K. L. Wong and Y. F. Lin, "Circularly polarized microstrip antenna with a tuning stub," Electron. Lett., vol. 34, pp. 831-832, April 30, 1998.
[34]W. H. Hsu and K. L. Wong, "Circularly polarized disk-sector microstrip antenna," Electron. Lett., vol. 34, pp. 2188-2190, Nov. 12, 1998.
[35]C. Y. Huang, J. Y. Wu, and K. L. Wong, "Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization," IEEE Trans. Antennas Propagat., vol. 47, pp. 605-609, April 1999.
[36]C. Y. Huang, J. Y. Wu, and K. L. Wong, "Slot-coupled microstrip antenna for broadband circular polarization," Electron. Lett., vol. 34, pp. 835-836, April 30, 1998.
[37]K. Chang, Microwave ring circuit and antenna, John Wiley and Sons, chap. 6-7 , pp. 125-154, 1998.
[38]J. R. James and P. S. Hall, Handbook of microstrip antennas, vol. 1 , pp. 143-144.
[39]K. L. Wong, “Planar antennas for wireless communications” John Wiley & Sons, New York, 2003.
[40]P. Salonen, M. Keskillammi and M.kinikoski, “New slot configurations for dual-band planar inverted-F antenna”, Microwave Opt. Technol. Lett., vol. 28, no. 1, pp. 79-80, 2002.
[41]S. H. Yeh, K. L. Wong, T. W. Chiou, and S. T. Fang, “Dual-band planar inverted F antenna for GSM/DCS mobile phones”, IEEE Trans. Antennas Propagat., Vol. 51, no. 5, pp.1124-1126, 2003.
[42]S. H. Yeh, K. L. Wong, T. W. Chiou, and S. T. Fang, “Modifying the ground plane and its effect on planar inverted-F antennas for mobile phone handsets”, IEEE Antennas and Wireless Propagat. Lett., Vol. 2, pp.226-229, 2003.
[43]M. C. Huynh and W. Stutzman, “Ground plane effects on planar inverted-F antenna performance”, IEE Proc.-Microw. Antennas Propagat., Vol. 150, no. 4, pp.209-213, 2003.
[44]H. C. Tung and K. L. Wong, “A shorted microstrip antenna for 2.4/5.2 GHz dual-band operation”, Microwave Opt. Technol. Lett., Vol. 30, no. 6, pp.401-402, 2001.
[45]W. C. MOK, R. Chair and K. F. Lee, “Wideband quarter-wave patch antenna with shorting pin”, IEE Proc.-Microw. Antennas Propagat., Vol. 150, no. 1, pp.56-60, 2003.
[46]Z. D. Liu and P. S. Hall, “Dual-frequency planar inverted-F antenna”, IEEE Trans. Antennas Propagat., Vol. 45, pp.1451-1458, 1997.
[47]P. Salonen, M. Keskilammi and M. Kivikoski, “Single-feed dual-band planar inverted-F antenna with U-shaped slot”, IEEE Trans. Antennas Propagat., Vol. 48, pp.1262-1264, 2000.
[48]Y. X. Guo, K. M. Luk and K. F. Lee, “A quarter-wave U-shaped patch antenna with two unequal arms for wideband and dual-frequency operation”, IEEE Trans. Antennas Propagat., Vol. 50, pp.1262-1264, 2002.
[49]P. Salonen, “Effect of groundplane size on radiation efficiency and bandwidth of dual-band U-PIFA”, 2003 IEEE AP-S Int. Symp. Dig., Vol. 3, pp.70-73, 2003.
[50]S. Yarasi, G.. R. Kadambi and T. Hebron, “Conformal shaped PIFAs for mobile communication applications”, 2003 IEEE AP-S Int. Symp. Dig., Vol. 3, pp.70-73, 2003.
[51]D. Manteuffel , “Design of multiband antennas for the integration in mobile phones with optimized SAR”, 2003 IEEE AP-S Int. Symp. Dig., Vol. 3, pp.66-69, 2003.
[52]K. Lan, S. K. Chaudhuri and S. Safavi-Naeini, “Design and analysis of a combination antenna with rectangular dielectric resonator and inverted L-plate”, IEEE Transactions on Antennas and Propagation, vol. 53, No. 1, pp. 495–501, January 2005.
[53]R. Simons, R. Lee, “Effect of parasitic dielectric resonators on CPW/aperture-coupled dielectric resonator antennas”, IEE proceedings-H, 140, pp. 336-338, 1993.
[54]Z. Fan, Y. M. M. Antar, A. Ittipiboon and A. Petosa, “Parasitic coplanar three-element dielectric resonator antenna subarray”, Electronics Letters, vol. 32, No. 9, pp. 789-790, 1996.
[55]K. M. Luk and K. W. Leung, Editors, “Dielectric Resonator Antennas”, Research Studies Press Ltd., Hertfordshire, England, UK, 2002.
[56]R. A. Kranenburg and S. A. Long, “Microstrip transmission line excitation of dielectric resonator antennas”, Electron. Lett., vol. 24, pp. 1156-1157, Sept. 1988.
[57]G. Drossos, Z. Wu and L. E. Davis, “A comparative study of circular microstrip and cylindrical dielectric resonator antennas”, 10th Int. Conference on Antennas Propagat., no. 436, pp. 38-42, 1997.
[58]G. Drossos, Z. Wu and L. E. Davis, “The air gap effect on a microstrip-coupled cylindrical dielectric resonator antenna”, Microw. And Opt. Techn. Lett., vol. 20, pp. 36-40, Jan. 1999.
[59]R. A. Kranenburg and S. A. Long and J. T. Williams, “Coplanar waveguide excitation of dielectric resonator antennas”, IEEE Trans. Antennas Propagat., vol. 39, pp. 119-122, 1991.
[60]U. Bhobe, C. L. Holloway and M. Piket-May, “CPW fed wide-band hybrid slot antenna”, IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 636-639, 2000.
[61]J. T. H. St. Martin, Y. M. M. Antar, A. A. Kishk and A. Ittipiboon, “Dielectric resonator antenna using aperture coupling”, Electron. Lett., vol. 26, pp. 2015-2016, Nov. 1990.
[62]G. P. Junker, A. A. Kishk and A. W. Glisson, “Input impedance of aperture-coupled dielectric resonator antennas”, IEEE Trans. Antennas Propagat., vol. 44, pp. 600-607,May 1996
[63]S. A. Long, “The resonant cylindrical dielectric cavity antenna”, IEEE Trans. Antennas Propag., AP-31, No. 3, pp. 406-412,1983.
[64]K. W. Leung, K. M. Luk, K. Y. A. Lai and D. Lin, “Theory and experiment of a coaxial probe fed dielectric resonator antenna”, IEEE Trans. Antennas Propagat., vol. 41, pp. 1390-1398, Oct. 1993.
[65]G. P. Junker, A. A. Kishk and A. W. Glisson, “Input impedance of dielectric resonator antennas excied by a coaxial probe”, IEEE Trans. Antennas Propagat., vol. 42, pp. 960-966,July 1994.
[66]G. P. Junker, A. A. Kishk , A. W. Glisson and D. Kajfez, “Effect of an air gap on cylindrical dielectric resonator antenna operating in TM01 mode”, Electron. Lett., vol. 30, pp. 97-98, Jan. 1994.
[67]K. M. Luk and H. K. Ng, “Theory and experiment of circularly polarized dielectric resonator antenna with a parasitic patch”, IEEE Trans. Antennas Propagat., vol. 51, no. 3, pp. 405-412, Mar. 2003.
[68]G. Walsh, C. S.; DeYoung and S. A. Long, “An Investigation of Stacked and Embedded Cylindrical Dielectric Resonator Antennas”, IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 130-133, 2006.
[69]T. A. Denidni, Q. Rao, ”Hybrid dielectric resonator antennas with radiating slot for dual-frequency operation”, IEEE Antennas and Wireless Propagation Letters, vol. 3, pp. 321-323, 2004
[70]J. S. Rao and B. N. Das, "Impedance characteristics of transverse slots in the ground plane of a stripline," Proc. IEE., vol. 125, pp. 29-31, 1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 宋鎮照,「解析當前美『中』兩國亞太政策下的東南亞發展策略」,展望與探索,第1卷第7期。2003年,頁12~27。
2. 周世雄,「冷戰後中共與西歐國家軍事合作關係之研究」,國際關係學報,第13期。1998年,頁147~160。
3. 吳正偉,「兩岸在華美軍售問題上的交鋒與迷思」,共黨問題研究,第27卷第7期。2001年,頁59~68。
4. 吳建德,「中共推動軍事外交戰略研究」,中共研究,第34卷第3期。2000年,頁82~97。
5. 李登科,「冷戰後中共與以色列軍事合作關係之研究」,國際關係學報,第13期。1998年,頁97~118。
6. 李明,「『信心建立措施』在朝鮮半島:實踐與成效」,戰略與國際研究,第2卷第1期。2000年,頁57~82。
7. 李明,「冷戰後中共與巴基斯坦軍事合作關係之研究」,國際關係學報,第13期。1998年,頁65~94。
8. 石之瑜,「解讀大國外交:論兩岸的差異」,政治科學論叢,第13期。2000年,頁147~164。
9. 方天賜,「印度實施經濟改革以來的外交走向」,問題與研究,第40卷第4期。2001年,頁81~96。
10. 王定士,「『中』俄戰略下協作夥伴關係下的亞太安全—中華民國應有之作為」,遠景季刊,第1卷第4期。2000年,頁111~154。
11. 于有慧,「中共的大國外交」,中國大陸研究,第42卷第3期。1999年,頁45~62。
12. 丁樹範,「全球化下的中國國防工業」,中國大陸研究,第49卷第3期。2006年,頁1~18。
13. 丁樹範,「市場因素與一九九○年代以後中國裝備體系的改革」,中國大陸研究,第48卷第1期。2005年,頁29~52。
14. 丁樹範,「一九九○年代以來的中國黨軍關係」,中國大陸研究,第46卷第2期。2003年,頁57~80。
15. 丁樹範,「中共未來的軍備政策」,遠景季刊,第2卷第2期。2001年,頁1~27。