跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康沐楷
研究生(外文):Mu-Kai Kang
論文名稱:紅外線微發射元件在矽(111)晶圓上的設計與研究
論文名稱(外文):Design and Study of Infrared Micro-Emitter Fabricated on (111)-Oriented Silicon Wafer
指導教授:陳忠男
指導教授(外文):Chung-Nan Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:119
中文關鍵詞:單晶矽(111)矽晶片懸浮結構熱導係數消耗功率
外文關鍵詞:c-Si(111)-oriented siliconsuspended c-Si microstructuresthermal conductancepower consumption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:656
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
由於單晶矽擁有良好的機械性、無殘餘應力的優點,所以適合應用在微結構製程。在本文的研究裡主要使用(111)矽晶片來設計單晶矽懸浮結構,並應用於微小型紅外線發射元件。本研究中可讓並聯的狹長型結構懸浮,發現使用ICP蝕刻後,PECVD製程的側壁保護,容易產生蝕刻液之側向滲入蝕刻。所以使用LOCOS製程來代替ICP,可以改善PECVD製程的側壁保護,避免側向的滲入蝕刻。
此外也對紅外線發射元件進行熱導、消耗功率和轉換熱輻射效能的理論分析,發現氣體熱導可由壓力控制、輻射熱導則隨溫度上升而增加、固體熱導因結構而改變。當700℃時,總熱導係數為49.5μW/K,其中固體熱導為43.3μW/K,顯然固體熱導為主要影響元件之因素,同時消耗總功率為33.75mW,熱輻射功率為4.4mW,故輻射功率轉換效能可達13% 。與其他元件比較,固體熱導可減少300μW/K,消耗總功率可降低200mW,故轉換效能可提高1.3倍至10倍。
As a result of the good mechanical properties and the excellence of non-residual stress of single crystal silicon (c-Si), my research focused on the design of suspended c-Si microstructures on (111)-oriented silicon wafer for micro-emitter applications. In our work, suspended c-Si microstructures were successfully fabricated by double ICP process. After the process of ICP, we found that the sidewall film deposited by PECVD was easily etched by etchant. We proposed a LOCOS method to protect the sidewall from etching.

In addition, we also present theoretical analysis of heat transfer power consumption, and power conversion efficiency of the micro-emitters. At 700℃ , the total thermal conductance is 49.5μW/K. The thermal solid conductance is 43.3μW/K. It’s clear that the domain effect of heat transfer is thermal solid conductance. And the power consumption of the component is 33.75 mW, the radiation power is 4.4mW. We found the power conversion efficiency is about 13%. Compare with other devices, the thermal solid conductance reduced about 300μW/K and the total power consumption decreased about 200mW. Therefore, the power conversion efficiency could improve 1.3~10 times.
中文摘要 ------------------------------------------------------- i
英文摘要 ------------------------------------------------------- ii
致謝 ------------------------------------------------------- iii
目錄 ------------------------------------------------------- iv
表目錄 ------------------------------------------------------- vi
圖目錄 ------------------------------------------------------- vii
符號說明 ------------------------------------------------------- ix
第一章 緒論-------------------------------------------- 1
1.1 研究目的---------------------------------------- 1
1.2 論文架構---------------------------------------- 4
第二章 理論基礎----------------------------------------- 5
2.1 單晶矽非等向性濕式蝕刻---------------------------- 5
2.1.1 矽晶體結構--------------------------------------- 5
2.1.2 基本概念---------------------------------------- 8
2.1.2.1 蝕刻終止技術------------------------------------- 9
2.1.2.2 蝕刻保護技術------------------------------------- 12
2.2 非等向性濕式蝕刻的影響因素------------------------ 13
2.2.1 非等向性濕式蝕刻的反應機制------------------------ 13
2.2.2 蝕刻液------------------------------------------ 15
2.2.3 (111)晶圓蝕刻特性-------------------------------- 17
2.3 紅外線概要--------------------------------------- 21
2.3.1 紅外線之發展------------------------------------- 21
2.3.2 紅外線在各類之應用-------------------------------- 22
2.4 電磁波概論--------------------------------------- 24
2.4.1 紅外線------------------------------------------ 25
2.4.2 黑體-------------------------------------------- 25
2.4.3 吸收率、放射率、反射率和穿透率-------------------- 25
2.4.4 Planck’s Law----------------------------------- 27
2.4.5 Wien’s displacement Law------------------------ 27
2.4.6 Stenfan-Boltzman Law--------------------------- 28
2.5 紅外線發射元件之熱傳------------------------------ 30
2.5.1 固體傳導---------------------------------------- 30
2.5.2 氣體傳導---------------------------------------- 34
2.5.3 輻射傳導---------------------------------------- 36
第三章 實驗設計與製程規劃-------------------------------- 38
3.1 實驗目的---------------------------------------- 38
3.2 實驗儀器---------------------------------------- 39
3.2.1 黃光微影製程------------------------------------- 39
3.2.2 非等向性蝕刻製程--------------------------------- 39
3.3 實驗規劃---------------------------------------- 42
3.3.1 (111)wafer懸浮結構之製程與----------------------- 42
3.3.1.1 晶片的前處理------------------------------------- 44
3.3.1.2 第一道微影製程----------------------------------- 44
3.3.1.3 ICP蝕刻製程------------------------------------- 46
3.3.1.4 保護層沉積--------------------------------------- 47
3.3.1.5 第二道微影製程----------------------------------- 47
3.3.1.6 第二次ICP蝕刻製程-------------------------------- 48
3.3.1.7 第三次ICP蝕刻製程-------------------------------- 48
3.3.1.8 TMAH側向蝕刻------------------------------------ 49
3.3.2 紅外線發射元件於(111)wafer之製程規劃-------------- 52
第四章 實驗結果與討論----------------------------------- 63
4.1 (111)wafer懸浮結構結果與討論---------------------- 63
4.2 紅外線發射器分析--------------------------------- 68
4.2.1 固體熱導分析------------------------------------- 69
4.2.2 氣體熱導分析------------------------------------- 71
4.2.3 輻射熱導分析------------------------------------- 73
4.2.4 轉換輻射效能分析--------------------------------- 75
4.2.5 加熱暫態分析------------------------------------- 81
4.2.6 元件比較分析------------------------------------- 82
第五章 結論與展望--------------------------------------- 84
參考文獻 ------------------------------------------------ 85
附錄一 紅外線元件製程規劃表------------------------------ 89
1. Hiroyasu Yuasa, Seishiro Ohya, Shiro Karasawa, Kenji Akimoto, Setsuo Kodato and Kiyoshi Takahashi,1997, “Single Crystal Silicon Micromachined Pulsed Infrared Light Source”,1997 International Conference on Solid-state Sensors and Actuators Chicago, June16-19.
2. Donald A. Neamen, 2003,Semiconductor Physics and Devices, McGraw-Hill Higher Education.
3. L. Walter, 1996,“Silicon microstructuring technology”, Materials science and engineering, R17, pp. 1-55.
4. D. B. Lee,1969, “Anisotropic etching of silicon “, Journal of Applied physics, Vol. 40,No. 11, pp. 4569-4574.
5. P. J. Hesketh, C. Ju, and S. Gowda,1993, “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc, Vol.140, No.4, pp. 1080-1084.
6. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,1990, “Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer”, J. Electrochem. Soc, Vol. 137, No. 11, pp. 3612-3626.
7. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,1990, “Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants”, J. Electrochem. Soc, Vol. 137, No. 11, pp. 3626-3632.
8. D. R. Ciarlo,1987, “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, pp. 6/1-4.
9. W. Fang and J. A. Wickert,1996,“Comments on measuring thin-film stresses using bi-layer micromachined beams”, Journal of Micromechanical and Microengineering, Vol. 5,pp. 276-281.
10. J. Klein, H. Guckel, D. P. Siddons, E. D. Johnson,1998, “X-Ray masks for very deep X-Ray lithography”, Microsystem Technologies 4, pp. 70-73.
11. E. D. Palik, V. M. Bermudez, and O. J. Glembocki, 1985,“Ellipsometric study of the etch-stop mechanism in heavily doped silicon”, J. Electrochem. Soc, pp. 135-141.
12. T. N. Jackson, M. A. Tischler, and K. D. Wise,1981,“An electrochemical P-N junction etch-stop for the formation of silicon microstructures”, IEEE Electron. Dev. Lett, Vol.EDL-2, No.2, pp. 44-45.
13. P. M. Sarro, A. W. van Herwaarden,1986, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications”, J. Electrochem. Soc, Vol. 133,No. 8, pp. 1724-1729.
14. M. Hirata, S. Suwazono, and H. Tanigawa,1987,“Diaphragm Thickness control in silicon pressure sensors using an anodic oxidation etch-stop”, J. Electrochem. Soc, Vol. 134,No. 8, pp. 2037-2041.
15. E. D. Palik, O. J. Glembocki, I. Heard, P. S. Burno, L. Tenerz,1991, “Etching roughness for (100) silicon surfaces in aqueous KOH”, J. Appl. Phys. 70 (6), pp. 3291-3300.
16.莊達人,1996,VLSI製造技術,高立圖書有限公司.
17. T. Baum, D. J. Schiffrin,1997,“AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications”, J. Micromech.Microeng. Number 4, pp. 338-342.
18. S. S. Tan, M. L. Reed, H. Han, R. Boudreau,1996, “Mechanisms of etch hillock formation”, J. Micro Electro Mechanical Systems, Vol. 5, No. 1, pp. 66-72.
19. Y. K. Bhatnagar and A. Nathan,1993, “ On pyramidal protrusions in anisotropic etching of <100> silicon”, Sensors and Actuators A, Vol. A36, pp. 233-240.
20. W. K. Choi, J. T. L. Luo, P. Tan, C. M. Chua, T. H. and Y. Bai,1998, “Characterisation of pyramid formation arising from the TMAH etching of silicon”, Sensors and Actuators A, Vol. A71, pp. 238-243.
21. L. M. Landsberger, S. Naseh, M. Kahrizi and M. Paranjape,1996,“On hillocks generated during anisotropic etching of Si in TMAH”, Journal of Microelectromechanical System, Vol. 5, No. 2, pp. 106-116.
22. O. Tabata, “pH-controlled TMAH etchants for silicon micromaching”, Transducers ’95, pp. 83-86.
23. H.R. Robbins and B. Schwartz,1959. ,“Chemical etching of silicon-I. The system HF, , and ,” J. Electrochem. Soc, Vol. 106, No. 6, pp. 505-508.
24. H.R. Robbins and B. Schwartz,1960, “Chemical etching of silicon-II. The system HF, , and ”, J. Electrochem. Soc, Vol. 107, No. 2, pp. 108-111.
25. B. Schwartz and H. R. Robbins,1961 , “Chemical etching of silicon-III. A temperature study in the acid system” J. Electrochem. Soc, Vol. 108, No. 4, pp. 365-372.
26. Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Petersen,1998, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, Vol. 86, No. 8, August, pp.1536-1551.
27. M. Elwenspoek,1996, “The form of etch rate minima in wet chemical anisotropic etching of silicon”, Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409.
28. B. Schwartz and H. R. Robbins,1976, “Chemical etching of silicon-IV. Etching technology, ” J. Electrochem. Soc, Vol. 123, No.12, pp. 1903-1909.
29. A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger,1997,“Activation energies in the chemical etching if semiconductors in -HF- ,” J. Electrochem. Soc, Solid State, Vol. 114, No. 9, pp. 970-973, Sept.
30. D. L. Kendall,1975, “On etching very narrow grooves in silicon”, Applied PhysicsLetters, Vol. 26, pp. 195-198.
31. K. Bean, 1978, “Anisotropic etching of silicon”,IEEE Transactions on Electron Devices,Vol. ED-25, No. 10, pp. 1185-1193.
32. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,1990, “Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer”, J. Electrochem. Soc, Vol. 137, No. 11, pp. 3612-3626.
33. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, 1990, “Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants”, J. Electrochem. Soc, Vol. 137, No. 11, pp. 3626-3632.
34. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa,2000, “Differences in anisotropic properties of KOH and TMAH solutions” Sensors and Actuators 80, pp. 179-188.
35. Bruce C.S. Chou, Chung-Nan Chen, Jin-Shown Shie,1999, “Micromachining on111-oriented silicon” Sensors and Actuators 75, pp.271–277.
36. R. Edwin Oosterbroek, J. W. (Erwin) Berenschot, Henri V. Jansen, A. Jasper Nijdam, Grégory Pandraud,2000,“ Etching Methodologies in 111–Oriented Silicon Wafers” Journal of Microelectromechanical systems. Vol.9 ,NO.3 September.
37. 洪國峰,2000,舌診影像系統在疾病辨識應用,中原大學醫學工程學系,碩士論文.
38. 張天鈞,2005, “從雄風飛彈到疾病偵測-談紅外線熱影像診斷系”,當代醫學,94年6月號.
39. 張一光,1987, “紅外線溫度量測技術”,台電工程月刊,第462期,第53-63頁.
40. 翁炳國,1992,矽之微細加工技術及應用,交通大學光電工程研究所,博士論文,第55-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top