跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱奕艎
研究生(外文):Y.H.Chiu
論文名稱:奈米光觸媒陶瓷/塑膠複材應用於布膜塗層之研究
論文名稱(外文):Study on the textile coatings made with nanophotocatalyst/polymer composites
指導教授:黃進光黃進光引用關係
指導教授(外文):C.K.Huang
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:60
中文關鍵詞:二氧化鈦奈米複合材料聚氯乙烯塗布分散劑
外文關鍵詞:TiO2Nano-compositesPVCCoatingDispersant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:483
  • 評分評分:
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
目前塑膠已經成功地被用於成型的部份。然而,大多數的塑膠要具有高強度且耐磨耗性質。若是只有塑膠材料並不能夠滿足這些需求。如果在塑膠中加入了補強的填充物會明顯的增加其機械性質。除此之外,如果在塑膠中加入了柰米光觸媒TiO2也會增加耐磨耗性和產品的防污效果。混練的材料如果混練的不均勻會影響到這一個材料的機械性質導致翹曲現象,因此再這一個研究中主要探討就是奈米陶瓷材料與塑膠混合成複合材料光觸媒複合材料能被當作一個紡織品的保護塗料,可以有防污的效果和磨耗強度,利用沉降試驗來選擇最好的表面活性劑來分散奈米粒子,然後奈米陶瓷粒子和塑膠混合成顆粒狀物使用表面活性劑來混練產生出均勻的生胚,研究是要有系統的把奈米陶瓷材料與塑膠混合在一起。
本文主要目的在於混練出均勻之複合材料,提供布膜為塗層用料,其複材生胚可為光觸媒材料,能提供布膜防污、防菌及耐磨耗等特性,所以如何捏練出均勻生胚就顯的非常重要,包括介面劑篩選、材料特性、捏練順序、生胚捏煉及之後的機械性質檢測,檢測方面可以分為耐磨耗試驗、拉伸試驗、撕裂強度試驗、紡織品抗菌檢測試驗、接觸角等研究。
The use of plastic material is becoming a potential alternative approach due to its versatility and the ease of batch fabrication. A number of pure plastics have been successfully used in the molded parts. However, most parts must possess high strength and wear resistance, and must have accurate dimensions. Plastic material alone cannot satisfy these requirements. The mechanical properties can be significantly improved if the plastics filled with reinforced fillers. In addition, the wear resistance and dust prevention of the products can be promoted if the nano-photocatalysts such as TiO2 can be added into the polymer. It is important for nano-ceramic particles/polymer with a uniformity stock. The warpage is induced and the mechanical properties are decreased if the mixing stock is not uniform. Thus, nano-ceramics/polymer composites with uniformly stock will be explored in this study. In this research, nano-photocatalyst/polymer composite can be used as a protective coating of textiles to prevent dust particles and increase wear resistance.The zeta-potential and sedimentation tests are used to select the best surfactant to disperse nano-particles. Then nano-ceramic particles are mixed with plastic pellets and surfactant using kneader to produce a uniform feedstock. The mixing of nano-ceramics and polymer are systematically investigated. The mechanical properties and dust particles in specimens will be measured.
摘 要 i
Abstract ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3文獻回顧 2
1.3.1濺鍍成型法 2
1.3.2 刮塗黏合法 2
1.3.3 電漿或氣相沈積法 3
1.4 全文架構 4
第二章 基礎原理介紹 5
2.1 二氧化鈦簡介 5
2.1.1 光觸媒簡介 7
2.1.2 光觸媒之氧化還原原理 8
2.1.3二氧化鈦光觸媒技術發展應用 9
2.2 聚氯乙烯(Polyvinylchloride, PVC) 10
2.2.1 聚氯乙烯的特性 10
2.3布膜定義 11
2.4 界面活性劑的影響 12
2.4.1 界面活性劑的種類 12
2.4.2 界面劑的篩選 13
2.5 粉體的物性 13
2.6 奈米粉體的分散原理 14
2.6.1 化學法分散奈米粉體 14
2.6.2 物理法分散奈米粉體 15
2.7 X-光繞射分析原理 16
2.8 混練原理 17
2.9 接觸角計 18
2.10 拉曼光譜儀原理 18
第三章 實驗設備與方法 20
3.1 概述 20
3.2 沉降實驗設備 20
3.3 混練儀器設備 22
3.4 奈微米射出成型機 24
3.5 微射出成型實驗微模具 26
3.5.1 磨耗試片模具 26
3.6 PVC塑膠 27
3.7 二氧化鈦材料 28
3.8分析設備 29
3.8.1拉曼光譜儀 29
3.8.2電子顯微鏡(SEM) 29
3.8.3磨耗試驗機 31
3.8.4接觸角測量儀 32
3.9 實驗方法 33
3.9.1 粉體相關性質 33
3.9.2 沉降實驗 33
3.9.3 混練最佳含量實驗 34
3.9.4機械性質實驗 35
3.9.5 磨耗實驗 35
3.9.6 拉伸試驗 36
3.9.7 組成鑑定 38
3.9.8 防污試驗 38
3.9.9撕裂試驗 38
3.9.10 抗菌實驗 39
第四章 結果與討論 42
4.1 粉體相關實驗 42
4.1.1 沉降實驗 42
4.1.2 最佳分散劑含量實驗 43
4.1.3 粉體光觸媒材料之組成鑑定 45
4.1.4 混練生胚後之組成鑑定 45
4.2 機械性質實驗 47
4.2.1 接觸角測量儀 47
4.2.2 磨耗試驗 48
4.2.3撕裂試驗 49
4.2.4 拉伸試驗 50
4.3抗菌實驗 53
第五章 結論 55
參考文獻 57
[1]賴根賢,微量射出成型之發展,機械工業雜誌,6月 (1999).
[2]羅仁權等,微射出成型技術綜論,機械工業雜誌,10月 (2001).
[3]S. Hill, “Micromoulding - a small injection of technolongy”, Materials World, 24-25, (2001).
[4]L. Weber and W. Ehrfeld, “Micro-Moulding-Process,Moulds,Applications”, Kunstoffe, 88, 1791-1802 (2001).
[5]C. Schneider, and G. Maier, “Small, but Potent-Special plastics for injection moulding microparts”, Kunststoffe, 91, 82-84 (2001).
[6]M.V. Bedekar, K. Yamazaki, and S. H. Risbud, “Molding of reprocessed thermoplastics with preplastication injection molding”, Journal of Applied Polymer Science, 82, 1455-1461 (2001).
[7]M. Niggemann, W. Ehrfeld, and L. Weber, “Fabrication of miniaturized biotechnical devices”, SPIE Processings, 3511, Micromachining and Microfabrication Process Technology IV, California, USA, 21-22(1998).
[8]J. Zhao, R.H. Mayes, C. Ge, and C.P. Sing, “Micro injection molding process”, SPE ANTEC Tech. Papers (2001).
[9]T. Sakay, “State of the art of injection molding of high performance ceramics”, Advance Polymer Technology, 11, 1 (1992).
[10]M. P. Groover, “Fundamentals of modern manufacturing 2/e”, john Wiley & Sons Ins (2002).
[11]Y.M. Chung, C.S. Moon, W.S. Jung, J .G. Han, “The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering:H2 effect”, Thin Solid Films, 515, 567-570 (2006).

[12]R.F. Majidi, N.S. Sanjani, and F. Agend, “Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization”, Thin Solid Films, 515, 368-374 (2006).
[13]A.Moustaghfir, E. Tomasella, M. Jacquet, A. Rivation, B. Mailhot, J.L. Gardette, and E. Beche, “ZnO/Al2O3 coatings for the photoprotection of polycarbonate”, Thin Solid Films, 515, 662-665 (2006).
[14]L. Guedri, S.B. Amor, J.L. Gardette, M. Jacquet, and A. Rivation, “Lifetime improvement of poly(ethylene naphthalate) by ZnO adhesive”, Polymer Degradation and Stability, 88, 199-205 (2005).
[15]E. M. Bachari, S.B. Amor, G. Baud, and M. Jacquet, “photoprotective zinc oxide coatings on polyethylene terephthalate films”, Materials Science and Engineering B, 79, 165-174 (2001).
[16]R.C. Patil and S. Radhadkrishnan,“Conducting polymer based hybrid nano-composites for enhanced corrosion protective coating” , Progress in Organic Coating” , 57, 332-336 (2006).
[17]H. J. Song, Z.Z. Zhang, and X.H. Men, “Effect treatment on the tribological performance of phenolic composite coating”, Surface & Coatings Technology, 201, 3767-3774 (2006).
[18]Z. Tang, Y. Xie, H. Hawthorne, A. Neville, Thammachart, T. Troczynski, G. Li, and Q. Yang, “Characterizing the microstructure and mechanical and electrochemical properties of novel ceramic/polymer sandwich structural coating”, Surface and Coatings Technology, 200, 5986-5994 (2006).
[19]J. Sun, W. W. Gerberrich, L.F. Francis, “Electrical and optical properties of ceramic-polymer nanocomposite coatings”, Journal of Polymer Science Part B: Polymer Phys, 41, 1744-1761 (2003).

[20]N.I. Baklanova, T.M. Zima, A.I. Boronin, S.V. Kosheev, A.T. Titov, N.V. Isaeva, D.V. Graschenkov, and S.Solntsev, “Protective ceramic multilayer coatings for carbon fiber”, Surface & Coatings Technology, 201, 2313-2319 (2006).
[21]H. Yoshiki, K. Abe, and T. Mitsui, “SiO2 thin film deposition on the inner surface of a poly(tetra-fluoroethylene) narrow tube by atmospheric-pressure glow microplasma”, Thin Solid Films, 515, 373-377 (1999).
[22]T.N. Chen, D.S. Wuu, C.C. Chiang, H.B. Lin, Y.P. Chen, and R.H. Horng, “Effect of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates”, Thin Solid Films, 514, 188-192 (2006).
[23]V.N. Zhitomirsky, I. Grimberg, M.C. Joseph, R.L. Boxman, A. Matthews, and B.Z. Weiss, “Vacuum arc deposition of conductive wear resistant coatings on polymer substrates”, Surface and Coatings Technology, 120-121, 373-377 (1999).
[24]J. Whole, H. Ahn, and K.T. Rie, “BCN coatings on polymer substrates by CVD at low temperature”, Surface and Coatings Technology, 116-119, 1166-1171 (1999).
[25]S. Ayrault, A. Chateauminois, J.P. Soulier, D. Treheux, and A.B. Vannes, “Deposition of a ceramic coatings on a thermoplastic polymer by atmospheric plasma and laser cladding”, Surface and Coatings Technology, 79, 119-130 (1996).
[26]S. Costil, C. Mateus, and C. Coddet, “Ceramic/fluoropolymer composite coatings by plasma spraying”, Surface and Coatings Technology, 201, 2020-2027 (2006).
[27]M. Bekholet, Wat. Sci. Tech, 35 (11-12) 95-100 (1997).
[28]K. Sunda, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Enviromental Science and Technology, 32:5, 726-728 (1998).
[29]M. Schiavello, Heterogeneous Photocatalysis (1997).
[30]H. Sakai, R-X. Cai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, “Purification and Treatment of Water and Air” 651-657 (1993).
[31]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 69-95 (1995).
[32]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett, 81, 454 (2002).
[33]Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, R. Maeda, and T. Shimizu, “Micro-Powder injection molding”, Journal of Materials Processing Technology, 127, 165-168 (2002).
[34]B. C. Mutsuddy and R. Ford, Ceramics Injection Molding CHAPMAN & HALL, New York (1995).
[35]A. R. Terry, “Fundamentals of Cermic Powder Processing and Synthesis”, ACAD EMIC PRESS, Salt Lake City, Utah (1996).
[36]R. Moreno and G. Cordoba, “Oil dispersions of alumina for tape casting”, Am. Ceram. Soc. Bull, 74, 69–74 (1995).
[37]鄧國欣,「粉體表面吸附有機界面活性劑對氧化鋁懸浮體之分散與流變行為的影響」,義守大學材料科學與工程學系碩士論文(2001)。
[38]Matthias Kind, “Precipitation phenomena and their relevance to precipitation technology”, Industrial Crystallization, 1-10 (1999).
[39]高濂;孫靜;劉陽橋,奈米粉體的分散及表面改性,台北:五南圖書出版公司,第29-30頁;第196-198頁 (2005)。
[40]J. Garside, “Tailoring crystal products in precipitation process and the role of mixing”, AIChE Symposium, 16-24 (1992).
[41]James S. Reed, “Principles of ceramic processing”, Chapter, 10, 132-139 (1989).
[42]林仕笳,「聚苯乙烯/蒙脫土有機無機奈米複合材料之研究」,中國文化大學材料科學與製造研究所碩士論文 (2002)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top