(3.232.129.123) 您好!臺灣時間:2021/02/26 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江長慈
研究生(外文):Chang-Tzu Chiang
論文名稱:事前整合下AHP群體決策方法之研究—以政府某機關委外計畫執行成效為例
論文名稱(外文):Deriving Group Decision in AHP Based on AIJ: Government Sponsored Research from a Department in Taiwan as an Example
指導教授:林進財林進財引用關係
指導教授(外文):Chin-Tsai Lin
學位類別:博士
校院名稱:銘傳大學
系所名稱:管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:模糊集群演算法成效評估層級分析法多目標決策
外文關鍵詞:Performance evaluationFuzzy cluster algorithmAnalytic hierarchy processMultiple criteria decision making
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
層級分析法中對於評估者意見的整合有兩種不同的程序,一為事前整合,一為事後整合;而事前整合的方法中則可以選擇幾何平均數法或算術平均數法。本文以數據模擬的方式,探討幾何平均數法及算術平均數法所產生權重之差異,本文研究結果發現,幾何平均數法或算術平均數法對權重的影響並不顯著,反而是評估者意見的離散程度對權重有顯著的影響。因此,本文以統計中集群分析之觀點出發,並發展了以模糊集群演算法為基礎的AHP模糊集群演算法,此方法可以將評估者意見的集群型態找出,進而求得權重值。為暸解在真實情境不同平均數在實際數據中之運用情形,本文以政府某機關之資料為例,計算該機關委外計畫執行成效管理中的指標權重,並且使用這些資料為本文所發展方法之實例演算依據。
There are two ways for aggregation of experts’ opinion in AHP, one is the aggregation of individual judgments (AIJ) and the other is the aggregation of individual priorities (AIP). In AIJ, geometrics and arithmetic mean are two popular way to aggregate the experts’ opinion, but which method is better; there is no conclusion in the references. From the result of simulation, there is no significant difference between the weights that generated from these two methods, but experts’ opinion of coincides or not will be the key point. In this study, the penalty fuzzy c-means were applied to generate AHP fuzzy cluster algorithm in for solving the problem when experts’ opinions are not coincides. In order to demonstrate the process of algorithm, the data from government sponsored research from a department in Taiwan are used.
目 錄
頁次
中文摘要………………………………………………………………I

英文摘要……………………………………………………………II

目錄……………………………………………………………………III

圖目錄…………………………………………………………………V

表目錄…………………………………………………………………VI


第一章 緒論……………………..……………………….………………….1
1.1 研究背景與動機…………...……………………….…………………1
1.2 研究問題與目的………..…………………………….………………2
1.3 研究限制…..………….……………………………….………………3
1.4 論文結構………...………………………………….…………………3
第二章 文獻探討…………………..………………………………………..4
2.1 層級分析法………..…………………………..………………………4
2.2 模糊集群分析……………..…………………………………………..6
2.3 政府某機關委外計畫執行成效評估模式……………...…………….7
第三章 研究設計…………………………..………………………………14
3.1 研究流程………………………..……………………………………14
3.2 數據模擬…………………………………………………………….14
3.3 運用模糊集群法於AHP群體決策……………..………………….17
3.4 問卷設計……………………………………..………………………23
第四章 結果分析……………………………...……………………………29
4.1 數據模擬結果………………………..………………………………29
4.1.1 評估者意見呈現常態分配………..……………………………29
4.1.2 評估者意見呈現均勻分配…………..…………………………36
4.2 政府委外計畫成效評估之AHP權重…………..…………………43
4.2.1 評估者之AHP權重…….…..…………………………………..44
4.2.2 評選模擬結果………………...…………….………………….54
4.3 模糊集群成對比較矩陣之整合……..…………………..…………57
第五章 結論與建議……………………..…………………………………61
5.1 結論…..………..……………………………………………………61
5.2 後續研究建議…………..…...……………………………………….62
參考文獻……………………..………………………………………………63
附錄…………………………….……………………………………………67
博士候選人簡歷……………………………………………………………...78
一、英文部分
1.Aczel, J and Saaty, T.L., “Procedures for Synthesizing Ratio Judgments,” Journal of Mathematical Psychology, Vol.27, 1983, pp.93-102.
2.Aczel, J. and Alsina, C., “On Synthesis of Judgments,” Social Economic Planning Sciences, Vol.20, No.6, 1986, pp.333-339.
3.Aczel, J. and Roberts, F. S., “On the Possible Merging Functions,” Mathematical Social Sciences, Vol. 17, 1989, pp.205-243.
4.Alexander, J. M., and Saaty, T. L., “The Forward and Backward Process of Conflict Analysis,” Behavioral Sciences, Vol.22, No.2, 1977, pp.87-98.
5.Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum, 1981.
6.Bozdogan, H. and Sclove, S. L., “Multi-sample Cluster Analysis Using Akaike’s Information Criterion,” Annals of the Institute of Statistical Mathematics, Vol. 36, 1984, pp. 163-180.
7.Bozdogan, H., “Model Selection and Akaike’s Information Criterion (AIC): The General Theory and its Analytical Extensions,” Psychometrika, Vol. 52, 1987, pp. 345-370.
8.Brown, M. G. and Svenson, R. A., “Measuring R&D Productivity,” Research Technology Management, July/August, 1988, pp.11-15.
9.Bryant, P.G. and Wiliamson, J. A., “Asymptotic Behavior of Classification Maximum Likelihood Estimates,” Biometrika, Vol.65, 1978, pp.273-281.
10.Bryson, N., “A Goal Programming Method for Generating Priority Vectors,” Journal of Operational Research Society, Vol.46, 1995, pp.461-468.
11.Bryson, N., “Group Decision Making and the Analytic Hierarchy Process: Exploring the Consensus-Relevant Information Content,” Computer and Operations Research, Vol.23, 1996, pp. 27-35.
12.Bryson, N., “Generating Consensus Priority Point Vectors; a Logarithmic Goal Programming,” Computer and Operation Research, Vol.26, 1999, pp.637-643.
13.Celeux, G. and Govaert, G., “Clustering Criteria for Discrete Data and Latent Cass Models,” Journal of Classification, Vol.8, 1991, pp.157-176.
14.Cook, W. D and Kress, M., “Deriving Weights from Pairwise Comparisons,” Social Economic Planning Sciences Vol.20, No.6, 1986, pp.341-345.
15.Cooper, D. R and Schindler, P. S., Business Research Method, 8th edition, New York: McGraw-Hill, 2003.
16.Dayton, C. M., Latent Class Scaling Analysis, California: SAGE, 1998.
17.Dunn, J. C., “ A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact, Well-Separated Cluster,” Journal of Cybernetics, Vol.3, 1974, pp.32-57.
18.Everitt, B. S. and Hand, D. J., Finite Mixture Distributions, New York: Chapman and Hall, 1981.
19.Everitt, B. S., “A Mote Carlo Investigation of the Likelihood Ration Test for Number of Components in a Mixture of Normal Distributions,” Multivariate Behavioral Research, Vol. 16, 1988, pp. 171-180.
20.Fichtner, J., “On Deriving Priority Vectors from Matrices of Pairwise Comparisons,” Social Economic Planning Sciences Vol.20, No.6, 1986, pp.399-405.
21.Forman, E. & Peniwati, K., “Aggregating Individual Judgments and Priorities with the Analytic Hierarchy Process,” European Journal of operational Research. Vol.108, 1998, pp.165-169.
22.Geisler, E., “Integrated Figure of Merit of Public Sector Research Evaluation,” Scientometrics, Vol.36, No.3, 1996, pp.379-395.
23.Holt, J. A. and Macready, G. B., “A Simulation Study of the Difference Chi-square Statistic for Comparing Latent Class Models Under Violation of Regularity Conditions,” Applied Psychological Measurement, Vol. 13, 1989, pp. 221-231.
24.Kostoff, R. N., “Federal Research Impact Assessment: Axioms, Approaches, Applications,” Scientmetrics, Vol. 34, No.2, 1995, pp. 163-206.
25.Lai, V.S., Wong, B.K. and Cheung, W., “Group Decision Making in a Multi Criteria Environment: A Case Using the AHP in Software Selection,” European Journal of Operational Research, Vol.137, 2002, pp.134-144.
26.Leroux, B. G. and Puterman, M. L., “Maximum-Penalized-Likelihood Estimation for Independent and Markov-dependent Mixture Models,” Biometrics, Vol. 48, 1992, pp. 545-558.
27.Lin, C. T. and Hsu, P. F., “Selection of Advertising Agencies Using Grey Relational Analysis and Analytic Hierarchy Process,” Journal of International Marketing and Marketing Research, Vol.26, No.3, 2001, pp.115-128.
28.Link, A. N., “Economic Performance Measures for Evaluating Government-Sponsored Research,” Scientometrics, Vol.36, No.3, 1996, pp.325-342.
29.Martin, B. R., “The Use of Multiple Indicators in the Assessment of Basic Research,” Scientometrics, Vol. 36, No. 3, 1996, pp. 343-362.
30.McLachlan, G. J. and Peel, D., Finite Mixture Models, New York: John Wiley and Sons, 2000.
31.McLachlan, G. J., “On Bootstrapping the Likelihood Ration Test Statistic for the Number of Components in a Normal Mixture,” Applied Statistics, Vol. 36, 1987, pp. 318-324.
32.Ramanathan, R. and Ganesh, L. S., “Using AHP for Resource Allocation Problems,” Journal of Operational Research, Vol.80, 1995 , pp.4140-417.
33.Ramanathan, R. and Ganesh, L. S., “Group Preference Aggregation Methods Employed in AHP: An Evaluation and Intrinsic Process for Driving Members’ Weightages,” European Journal of Operational Research, Vol.79, 1996, pp.249-265.
34.Ramanathan, R., “A Note on the Use of Goal Programming for the Multiplicative AHP,” Journal of Multi-Criteria Decision Analysis, Vol.6, 1997, pp.296-307.
35.Read, T. R. C. and Cressie, N. A. C., Goodness-of-Fit Statistics for Discrete Multivariate Data, New York: Springer-Verlag, 1988.
36.Rubenstein, A. H. and Geisler, E., “Evaluating the Outputs and Impacts of R&D / Innovation,” International Journal of Technology Management, Vol.6, No.3, 1991, pp.181-204.
37.Saaty, T. L., “A Scaling Method for Priorities in Hierarchical Structural,” Journal of Mathematical Psychology, Vol.15, 1977, pp.274-281.
38.Saaty, T. L., The Analytic Hierarchy Process, 2nd edition, New York: RWS Publications, 1990.
39.Saaty, T. L.,Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. New York: RWS Publications, 1994.
40.Scott, A. J. and Symons, M. J., “Clustering Methods Based on Likelihood Ratio Criteria,” Biometrics, Vol.27, 1971, pp.387-397.
41.Segal, M. R., Bacchetti, P. and Jewell, N. P., “Variances for Maximum Penalized Likelihood Estimates Obtained via the EM Algorithm,” Journal of Royal Statistical Society Series B, Vol. 56, 1994, pp. 345-352.
42.Schwarz, G., “Estimating the Dimension of a Model,” The Annals of Statistics, Vol. 6, 1978, pp. 461-464.
43.Trauwaert, E., Kaufman, L. and Rousseeuw, P., “Fuzzy Clustering Algorithms Based on the Maximum Likelihood Principle,” Fuzzy Sets and Systems, Vol. 42, 1991, pp. 213-227.
44.Vagas, L. G., “An Overview of the Analytic Hierarchy Process and Its Applications,” European Journal of Operational Research, Vol.48, 1990, pp.2-8.
45.Vinkler, P., “General Performance Indexes Calculated for Research Institutes of the Hungarian Academy of Sciences Based on Scientometric Indicators,” Scientometrics, Vol. 41, Nos. 1-2, 1998, pp.185-200.
46.Wedley, W. C., “Combining Qualitative and Quantitative Factors- an Analytic Hierarchy Approach,” Social Economics Planning Sciences, Vol.24, 1990, pp.57-64.
47.Yang, M. S. and Yu, K. F., “On Stochastic Convergence Theorems for the Fuzzy c-Means Clustering Procedures,” International Journal of General Systems, Vol.16, 1990, pp.397-411.
48.Yang, M. S. and Yu, K. F., “On Existence and Strong Consistency of a Class of Fuzzy c-Means Clustering Procedures,” Cybernetics and Systems, Vol.23, 1992, pp.583-602.
49.Yang, M. S., “On a Class of Fuzzy Classification Maximum Likelihood Procedures,” Fuzzy Sets and Systems, Vol. 57, 1993a, pp. 365-375.
50.Yang, M. S., “Convergence Properties of the Generalized Fuzzy C-means Clustering Algorithms,” Computers Mathematics Application, Vol. 25, No.12, 1993b, pp. 3-11.
51.Yang, M. S. and Su, C. F., “On Parameter Estimation for Normal Mixtures Based on Fuzzy Clustering Algorithms,” Fuzzy Sets and Systems, Vol. 68, 1994, pp. 13-28.
52.Zahedi, F., “The Analytic Hierarchy Process: a Survey of the Method and Its Applications,” Interfaces, Vol.16, No.4, 1986, pp.96-108.
二、中文部分
1. 行政院,行政院所屬各機關委外研究計畫管理辦法,民國88年。
2.鄧振源,計畫評估—方法與應用,基隆市:海洋大學運籌規劃與管理研究中心,民國91年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔