|
一、英文部分 1.Aczel, J and Saaty, T.L., “Procedures for Synthesizing Ratio Judgments,” Journal of Mathematical Psychology, Vol.27, 1983, pp.93-102. 2.Aczel, J. and Alsina, C., “On Synthesis of Judgments,” Social Economic Planning Sciences, Vol.20, No.6, 1986, pp.333-339. 3.Aczel, J. and Roberts, F. S., “On the Possible Merging Functions,” Mathematical Social Sciences, Vol. 17, 1989, pp.205-243. 4.Alexander, J. M., and Saaty, T. L., “The Forward and Backward Process of Conflict Analysis,” Behavioral Sciences, Vol.22, No.2, 1977, pp.87-98. 5.Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum, 1981. 6.Bozdogan, H. and Sclove, S. L., “Multi-sample Cluster Analysis Using Akaike’s Information Criterion,” Annals of the Institute of Statistical Mathematics, Vol. 36, 1984, pp. 163-180. 7.Bozdogan, H., “Model Selection and Akaike’s Information Criterion (AIC): The General Theory and its Analytical Extensions,” Psychometrika, Vol. 52, 1987, pp. 345-370. 8.Brown, M. G. and Svenson, R. A., “Measuring R&D Productivity,” Research Technology Management, July/August, 1988, pp.11-15. 9.Bryant, P.G. and Wiliamson, J. A., “Asymptotic Behavior of Classification Maximum Likelihood Estimates,” Biometrika, Vol.65, 1978, pp.273-281. 10.Bryson, N., “A Goal Programming Method for Generating Priority Vectors,” Journal of Operational Research Society, Vol.46, 1995, pp.461-468. 11.Bryson, N., “Group Decision Making and the Analytic Hierarchy Process: Exploring the Consensus-Relevant Information Content,” Computer and Operations Research, Vol.23, 1996, pp. 27-35. 12.Bryson, N., “Generating Consensus Priority Point Vectors; a Logarithmic Goal Programming,” Computer and Operation Research, Vol.26, 1999, pp.637-643. 13.Celeux, G. and Govaert, G., “Clustering Criteria for Discrete Data and Latent Cass Models,” Journal of Classification, Vol.8, 1991, pp.157-176. 14.Cook, W. D and Kress, M., “Deriving Weights from Pairwise Comparisons,” Social Economic Planning Sciences Vol.20, No.6, 1986, pp.341-345. 15.Cooper, D. R and Schindler, P. S., Business Research Method, 8th edition, New York: McGraw-Hill, 2003. 16.Dayton, C. M., Latent Class Scaling Analysis, California: SAGE, 1998. 17.Dunn, J. C., “ A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact, Well-Separated Cluster,” Journal of Cybernetics, Vol.3, 1974, pp.32-57. 18.Everitt, B. S. and Hand, D. J., Finite Mixture Distributions, New York: Chapman and Hall, 1981. 19.Everitt, B. S., “A Mote Carlo Investigation of the Likelihood Ration Test for Number of Components in a Mixture of Normal Distributions,” Multivariate Behavioral Research, Vol. 16, 1988, pp. 171-180. 20.Fichtner, J., “On Deriving Priority Vectors from Matrices of Pairwise Comparisons,” Social Economic Planning Sciences Vol.20, No.6, 1986, pp.399-405. 21.Forman, E. & Peniwati, K., “Aggregating Individual Judgments and Priorities with the Analytic Hierarchy Process,” European Journal of operational Research. Vol.108, 1998, pp.165-169. 22.Geisler, E., “Integrated Figure of Merit of Public Sector Research Evaluation,” Scientometrics, Vol.36, No.3, 1996, pp.379-395. 23.Holt, J. A. and Macready, G. B., “A Simulation Study of the Difference Chi-square Statistic for Comparing Latent Class Models Under Violation of Regularity Conditions,” Applied Psychological Measurement, Vol. 13, 1989, pp. 221-231. 24.Kostoff, R. N., “Federal Research Impact Assessment: Axioms, Approaches, Applications,” Scientmetrics, Vol. 34, No.2, 1995, pp. 163-206. 25.Lai, V.S., Wong, B.K. and Cheung, W., “Group Decision Making in a Multi Criteria Environment: A Case Using the AHP in Software Selection,” European Journal of Operational Research, Vol.137, 2002, pp.134-144. 26.Leroux, B. G. and Puterman, M. L., “Maximum-Penalized-Likelihood Estimation for Independent and Markov-dependent Mixture Models,” Biometrics, Vol. 48, 1992, pp. 545-558. 27.Lin, C. T. and Hsu, P. F., “Selection of Advertising Agencies Using Grey Relational Analysis and Analytic Hierarchy Process,” Journal of International Marketing and Marketing Research, Vol.26, No.3, 2001, pp.115-128. 28.Link, A. N., “Economic Performance Measures for Evaluating Government-Sponsored Research,” Scientometrics, Vol.36, No.3, 1996, pp.325-342. 29.Martin, B. R., “The Use of Multiple Indicators in the Assessment of Basic Research,” Scientometrics, Vol. 36, No. 3, 1996, pp. 343-362. 30.McLachlan, G. J. and Peel, D., Finite Mixture Models, New York: John Wiley and Sons, 2000. 31.McLachlan, G. J., “On Bootstrapping the Likelihood Ration Test Statistic for the Number of Components in a Normal Mixture,” Applied Statistics, Vol. 36, 1987, pp. 318-324. 32.Ramanathan, R. and Ganesh, L. S., “Using AHP for Resource Allocation Problems,” Journal of Operational Research, Vol.80, 1995 , pp.4140-417. 33.Ramanathan, R. and Ganesh, L. S., “Group Preference Aggregation Methods Employed in AHP: An Evaluation and Intrinsic Process for Driving Members’ Weightages,” European Journal of Operational Research, Vol.79, 1996, pp.249-265. 34.Ramanathan, R., “A Note on the Use of Goal Programming for the Multiplicative AHP,” Journal of Multi-Criteria Decision Analysis, Vol.6, 1997, pp.296-307. 35.Read, T. R. C. and Cressie, N. A. C., Goodness-of-Fit Statistics for Discrete Multivariate Data, New York: Springer-Verlag, 1988. 36.Rubenstein, A. H. and Geisler, E., “Evaluating the Outputs and Impacts of R&D / Innovation,” International Journal of Technology Management, Vol.6, No.3, 1991, pp.181-204. 37.Saaty, T. L., “A Scaling Method for Priorities in Hierarchical Structural,” Journal of Mathematical Psychology, Vol.15, 1977, pp.274-281. 38.Saaty, T. L., The Analytic Hierarchy Process, 2nd edition, New York: RWS Publications, 1990. 39.Saaty, T. L.,Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. New York: RWS Publications, 1994. 40.Scott, A. J. and Symons, M. J., “Clustering Methods Based on Likelihood Ratio Criteria,” Biometrics, Vol.27, 1971, pp.387-397. 41.Segal, M. R., Bacchetti, P. and Jewell, N. P., “Variances for Maximum Penalized Likelihood Estimates Obtained via the EM Algorithm,” Journal of Royal Statistical Society Series B, Vol. 56, 1994, pp. 345-352. 42.Schwarz, G., “Estimating the Dimension of a Model,” The Annals of Statistics, Vol. 6, 1978, pp. 461-464. 43.Trauwaert, E., Kaufman, L. and Rousseeuw, P., “Fuzzy Clustering Algorithms Based on the Maximum Likelihood Principle,” Fuzzy Sets and Systems, Vol. 42, 1991, pp. 213-227. 44.Vagas, L. G., “An Overview of the Analytic Hierarchy Process and Its Applications,” European Journal of Operational Research, Vol.48, 1990, pp.2-8. 45.Vinkler, P., “General Performance Indexes Calculated for Research Institutes of the Hungarian Academy of Sciences Based on Scientometric Indicators,” Scientometrics, Vol. 41, Nos. 1-2, 1998, pp.185-200. 46.Wedley, W. C., “Combining Qualitative and Quantitative Factors- an Analytic Hierarchy Approach,” Social Economics Planning Sciences, Vol.24, 1990, pp.57-64. 47.Yang, M. S. and Yu, K. F., “On Stochastic Convergence Theorems for the Fuzzy c-Means Clustering Procedures,” International Journal of General Systems, Vol.16, 1990, pp.397-411. 48.Yang, M. S. and Yu, K. F., “On Existence and Strong Consistency of a Class of Fuzzy c-Means Clustering Procedures,” Cybernetics and Systems, Vol.23, 1992, pp.583-602. 49.Yang, M. S., “On a Class of Fuzzy Classification Maximum Likelihood Procedures,” Fuzzy Sets and Systems, Vol. 57, 1993a, pp. 365-375. 50.Yang, M. S., “Convergence Properties of the Generalized Fuzzy C-means Clustering Algorithms,” Computers Mathematics Application, Vol. 25, No.12, 1993b, pp. 3-11. 51.Yang, M. S. and Su, C. F., “On Parameter Estimation for Normal Mixtures Based on Fuzzy Clustering Algorithms,” Fuzzy Sets and Systems, Vol. 68, 1994, pp. 13-28. 52.Zahedi, F., “The Analytic Hierarchy Process: a Survey of the Method and Its Applications,” Interfaces, Vol.16, No.4, 1986, pp.96-108. 二、中文部分 1. 行政院,行政院所屬各機關委外研究計畫管理辦法,民國88年。 2.鄧振源,計畫評估—方法與應用,基隆市:海洋大學運籌規劃與管理研究中心,民國91年。
|