(3.238.96.184) 您好!臺灣時間:2021/05/12 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃資容
研究生(外文):Tzu Jung Huang
論文名稱:台灣原生種虎杖組織培養繁殖與反式白藜蘆醇之分析
論文名稱(外文):Tissue Culture Propagation and trans- Resveratrol Determination of Native Polygonum cuspidatum in Taiwan
指導教授:鍾仁彬鍾仁彬引用關係
指導教授(外文):Jen-Ping Chung
學位類別:碩士
校院名稱:明道大學
系所名稱:材料暨系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:83
中文關鍵詞:虎杖、反式白藜蘆醇、癒傷組織、細胞懸浮培養
外文關鍵詞:trans-resveratrolPolygonum cuspidatumcallus
相關次數:
  • 被引用被引用:3
  • 點閱點閱:486
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:0
台灣原生種虎杖(Polygonum cuspidatum Sied. et Zucc.)為蓼科多年生半木質化草本,莖有節如杖且有虎斑而得名。內含的多酚類化合物-反式白藜蘆醇(trans-resveratrol)具有多種生物活性,如防止心血管疾病、抑制低密度脂蛋白、抗腫瘤、降低冠狀心臟病的危險與血糖數值、較佳的胰島素敏感性以及延年益壽等。
經HPLC分析台灣原生種虎杖根莖,白藜蘆醇含量可達3.89± 0.60 mg/g 乾重,較紅酒(Huaxia Great Wall dry red wine)的白藜蘆醇含量2.62 μg/mL更高。顯示台灣原生虎杖具經濟開發價值,再加上受到土地面積、植物生長速率及藥材來源限制。因此,本論文研究目的為:以細胞工廠的概念,建立虎杖細胞懸浮培養系統。生產具高經濟價值之二次代謝物白藜蘆醇。
本研究首先建立虎杖根莖分析程序,取得含高量白藜蘆醇的虎杖品系051111,將其做無菌消毒培養成無性繁殖系,再利用其莖節、葉片為二次培植體,誘導器官發生與癒傷組織發生試驗。培養於MS添加0.1 mg/L NAA組合0.5 mg/L BA之培養基四個禮拜後,有較佳的誘導叢生芽再生率及增殖數目,分別為96.3%與2.9個。以葉片為培植體誘導癒傷組織,在MS添加2-4 mg/L 2,4-D其癒傷組織生長較快。以莖節為培植體誘導癒傷組織,MS培養基中組合1.0 mg/L 2,4-D與0.1 mg/L Kinetin鮮重較重,0.5 mg/L 2,4-D組合0.1 mg/L 2ip有較佳之乾物重累積。以0.5 mg/L的NAA誘導根發生其平均根數較多,平均為6.63根。
將生長良好且結構鬆散,均質之癒傷組織用液體培養,建立虎杖細胞懸浮系統。細胞接種起始體積以50 mL工作體積,接種1.0 ml的細胞有較佳的生長趨勢。含1 mg/L 2,4-D之MS液體培養基中,細胞生長情形較為穩定,並可持續繼代培養,維持細胞活力。根據虎杖細胞生長曲線得知,在第14~16天為最佳細胞繼代培養時間。將懸浮細胞照射強度為15 W的UVC燈管20 min、30 min後,再持續暗培養1天、2天,初步HPLC分析結果尚未得到穩定白藜蘆醇訊號出現。
Traditional Chinese medicinal herb, Polygonum cuspidatum Sied. et Zucc., widely spread in China and Taiwan, belongs to the family Polygonaceae. Rhizome samples contained higher resveratrol levels than red wine has been reported. The trans-resveratrol was quantified using an HPLC method optimized for the analysis of native Polygonum cuspidatum in Taiwan was at 3.89± 0.60 mg/g DW. There is more economic value to use the secondary metabolism from Polygonum cuspidatum. Therefore, the objectives expect to establish an in vitro system of regeneration and cell suspension culture from high resveratrol expressing plants of Polygonum cuspidatum. The purpose of this research is to maintain the genotype and scale up the culture.
The lateral bud explants inoculated on MS basal medium supplemented with 0.1 mg/L NAA and 0.5 mg/L BA, 30 g/L sucrose and 7.0 g/L agar. The regeneration of adventitious buds was induced on 96.3 % after four weeks. Calli were induced by MS basal medium supplemented with 1.0 mg/L 2,4-D and 0.1 mg/L Kinetin. The composition of medium indicated the best mass of cell growth. The 1.0 mL SCV of suspension cells inoculated on 50 mL MS liquid medium supplemented with 1.0 mg/L 2,4-D. The cells would growth to above 69 %. The subculture timing was about 14-16 days.
目 錄
頁次
中文摘要.................................................................................................... I英文摘要..................................................................................................III圖目錄.....................................................................................................VII
表目錄..................................................................................................... IX
縮寫字代號..............................................................................................XI
第一章 緒言............................................................................................1
第二章 前人研究....................................................................................4
2.1 虎杖的分類地位與地理分佈.....................................................4
2.2 虎杖的主要成分.........................................................................5
2.3 虎杖的性味及藥理應用.............................................................7
2.4 白藜蘆醇的分類與化學結構.....................................................8
2.5 白藜蘆醇的化學活性與應用...................................................11
2.6 植物分子農場與細胞工廠.......................................................12
2.7 植物逆境與二次代謝...............................................................15
2.8 虎杖根莖之分析.......................................................................17
第三章 材料與方法..............................................................................22
3.1 植物材料...................................................................................22
3.2 虎杖組織培養與再生誘導.......................................................22
3.2.1 莖段備製與表面消毒......................................................22
3.2.2 莖段培養叢生芽誘導試驗..............................................23
3.2.3 二次培植體逆分化誘導..................................................23
3.2.4 小植株建立與馴化移植..................................................24
3.3 虎杖二次培植體癒傷組織誘導與細胞懸浮培養...................25
3.3.1 細胞懸浮培養..................................................................25
3.3.2 細胞生長曲線測定..........................................................26
3.3.3 細胞接種量與增生效率..................................................26
3.3.4 2,4-D濃度處理與懸浮細胞增生關係..........................27
3.3.5 逆境誘導試驗..................................................................27
3.4 虎杖白藜蘆醇含量分析...........................................................28
3.4.1 虎杖品系間根莖及懸浮細胞粗抽取備製......................28
3.4.2 標準曲線之繪製..............................................................30
3.4.3 高效液相層析分析..........................................................31
3.5 統計分析...................................................................................32
第四章 結果..........................................................................................33
4.1 莖段培養叢生芽誘導試驗.......................................................33
4.2 二次培植體逆分化誘導...........................................................44
4.2.1 TDZ與2,4-D對虎杖再生不定芽之葉片為培植體
之試驗..............................................................................44
4.2.2 不同植物生長調節劑對虎杖莖節誘導癒傷組織發生
之影響..............................................................................47
4.3 小植株建立與馴化移植….......................................................49
4.4 細胞懸浮培養...........................................................................51
4.4.1 細胞生長曲線測定..........................................................51
4.4.2 細胞接種量與增生效率..................................................52
4.4.3 2,4-D濃度處理與懸浮細胞增生關係.............................54
4.4.4 逆境誘導試驗..................................................................55
4.5 虎杖根莖白藜蘆醇含量分析...............................................58
第五章 討論..........................................................................................61
參考文獻..................................................................................................66
附錄..........................................................................................................79










圖 目 錄
頁次
圖2-1. 台灣原生種虎杖..........................................................................5
圖2-2. 反式白藜蘆醇化學式..................................................................9
圖2-3. 白藜蘆醇UV分析光譜.............................................................11
圖3-1. 白藜蘆醇標準品檢量線.............................................................31
圖4-1. 莖節培植體在生長素NAA組合各種濃度的BA培養基下
芽的再生情形............................................................................40
圖4-2. 莖節培植體在生長素NAA組合各種濃度的2ip培養基下
芽的再生情形............................................................................41
圖4-3. 莖節培植體在生長素NAA組合各種濃度的TDZ培養基下
芽的再生情形.......…………………………………………….42
圖4-4. 莖節培植體在生長素NAA組合各種濃度的Kinetin
培養基下芽的再生情形…........................................................43
圖4-5. 各種2,4-D濃度組合不同濃度的TDZ誘導癒傷組織
形成情形....................................................................................46
圖4-6. 2,4-D與細胞分裂素組合誘導虎杖形成癒傷組織.....................49
圖4-7. 組培馴化後的虎杖植株.............................................................51
圖4-8. 虎杖的懸浮細胞生長曲線.........................................................52
圖4-9. 虎杖細胞系其接種體積對細胞增生率的影響.........................54
圖4-10. 虎杖細胞萃取液中白藜蘆醇的含量測定...............................56
圖4-11. 虎杖根莖萃取液中白藜蘆醇的含量測定...............................60
















表 目 錄
頁次
表2-1. 反式白藜蘆醇在紅酒、中草藥及花生中的含量.....................10
表3-1. 白藜蘆醇標準品在不同濃度與不同注射體積組合下之
積分面積變化............................................................................30
表3-2. 分離虎杖根中的白藜蘆醇之沖提時移動相梯度變化.............32
表4-1. 生長調節劑NAA組合BA對虎杖莖節培養
不定芽發生的影響....................................................................35
表4-2. 生長調節劑NAA組合2ip對虎杖莖節培養
不定芽發生的影響....................................................................36
表4-3. 生長調節劑NAA組合TDZ對虎杖莖節培養
不定芽發生的影響....................................................................37
表4-4. 生長調節劑NAA組合Kinetin對虎杖莖節培養
不定芽發生的影響....................................................................38
表4-5. NAA與四種細胞分裂素BA, 2ip, TDZ, Kinetin
對於莖節的芽再生率..................................................................39
表4-6. NAA與四種細胞分裂素BA, 2ip, TDZ, Kinetin
對於莖節的芽增殖效率..............................................................39
表4-7. 不同濃度2,4-D搭配TDZ對於誘導虎杖再生葉片
癒傷組織之鲜重、乾重..............................................................45
表4-8. 各種2,4-D濃度單獨或配合各種細胞分裂素對莖節
癒傷組織誘導發生之鮮重、乾重..............................................48
表4-9. 不同生長素對虎杖莖節根誘導的影響.....................................50
表4-10. 細胞接種起始體積對虎杖細胞生長的影響...........................53
表4-11. 2,4-D濃度對虎杖懸浮細胞生長的影響...................................55
表4-12. 經HPLC分析虎杖栽培18個月之11個品系與
野生母株虎杖中白藜蘆醇含量之差異性..............................59
甘偉松. 1980. 中國高等植物圖誌. 宏業書局有限公司. p. 567.
林文智. 1999. 台灣的野花-高海拔篇. p. 146-147. 渡假出版社有限公司.
林李昌. 2002. 何首烏之組織培養. 國立中興大學農藝學系碩士論文.
邱年永. 1987. 高山藥用植物. p.37-38. 南天書局印行.
吳志鴻. 2006. 林產研究新思維-抗氧化活性物質之利用潛能. 林業研究專訊. 行政院農業委員會林業試驗所. 13(4): 1-5.
郭賢伸. 2005. 利用細本山葡萄(Vitis thunbergii Sieb. et Zucc.)細胞培養生產白黎蘆醇(resveratrol)之研究. 大同大學生物工程研究所碩士論文.
華海清、宋起、李益生. 2003. 現代養生保健中藥大辭典 上冊. p. 286-288. 薪傳出版社.
曾士育. 2006. 細葉十大功勞組織培養及小蘗鹼 (berberine) 含量之探討. 國立嘉義大學農學研究所碩士論文.
游以德、陳玉峯、吳盈. 1990. 台灣原生植物(下). 淑馨出版社. p. 330.
楊文乾. 2005. 現代神農草藥圖鑑1. 新潮社文化事業有限公司. p. 88-89.
鄭漢臣. 2004. 藥用植物學(第三版). 文光圖書有限公司. p.189-191.
Adrian, M., P. Jeandet, A. C. Breuil, D. Levite, S. Debord, and R. Bessis. 2000. Assay of resveratrol and derivated stilbenes in wines by direct injection high per-formance liquid chromatography. Am. J. Enol. Vitic. 51: 37-41.
Aggarwal, B. B., A. Bhardwaj, R. S. Aggarwal, N. P. Seeram, S. Shishodia, and Y. Takada. 2004. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 4: 2783-2840.
Aznar, M., R. Lopez, J. F. Cacho, and V. Ferreira. 2001. Identification and quantification of impact odorants of aged red wines from rioja. gc-olfactometry, quantitative gc-ms, and odor evaluation of HPLC fractions. J. Agric. Food Chem. 49: 2924-2929.
Baptista, J. A. B., J. F. D. P. Tavares, and R. C. B. Carvalho. 2001. Comparison of polyphenols and aroma in red wines from Portuguese mainland versus azores islands. Food Research International 34: 345-355.
Belguendouz, L., L. Fremont, M. T. Gozzelino. 1998. Interaction of trans-resveratrol with plasma lipoproteins. Biochem. Pharmacol 55: 811-816.
Bell, E. A. 1981. The physiological roles of secondary (natural) products. In Conn, E. E. (Ed.): The Biochemistry of Plants. A Comprehensive Treatise, Vol. 7, p. 1-19. Secondary Plant Products. Academic Press, New York.
Benjamin, B. D., P. C. Roja, M. R. Heble, and M. S. Chadha. 1987. Multiple shoot cultures of Rauvolfia serpentine: growth and alkaloid production. J. Nat. Prod. 129: 129-135.
Chawla, H. S. 2002. Cell Suspension and Secondary Metabolites. In: Introduction to Plant Biotechnology. p. 57-73. Science Publishers, Inc.
Chen, L., Y. Han, F. Yang, and T. Zhang. 2001. High-speed counter- current chromatography separation and purification of resveratrol and piceid from Polygonum cuspidatum. J. Chromatogr. A 907: 343-346.
Chu, X., A. Sun, and R. Liu. 2005. Preparative isolation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. J. Chromatogr. A 1097: 33-39.
Delmas, D., B. Jannin, and N. Latruffe. 2005. Resveratrol: Preventing properties against vascular alterations and ageing. Mol. Nutr. Food Res. 49: 377-395.
Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411: 843-847.
Domínguez, C., D. A. Guillén, and C. G. Barroso. 2001. Automated solid-phase extraction for sample preparation followed by high- performance liquid chromatography with diode array and mass spectrometric detection for the analysis of resveratrol derivatives in wine. J. Chromatogr. A 918: 303-310.
Douillet-Breuil, A. C., P. Jeandet, M. Adrian, and R. Bessis. 1999. Changes in the phytoalexin content of various Vitis Spp. in response to Ultraviolet C elicitation. J. Agric. Food Chem. 47: 4456-4461.
Dourtoglou, V. G., D. P. Makris, F. Bois-Dounas, and C. Zonas. 1999. trans-Resveratrol concentration in wines produced in Greece. Journal of Food Composition and Analysis 12: 227-233.
Dutta-Roy, A. K. 2002. Dietary components and human platelet activity. Platelets 13: 67-75.
Faria, R. T., and R. D. Illg. 1995. Micropropagation of Zingiber spectabile Griff. Sci. Hort. 62: 135-137.
Frankel, E. N., A. L. Waterthouse, and J. E. Kinsella. 1993. Inhibition of human LDL oxidation by resveratrol. Lancet 341: 1103-1104.
Fremont, L. 2000. Biological effects of resveratrol. Life Sci. 66: 663-673.
Fremont, L., L. Belguendou, and S. Delpal. 1999. Antioxidant activity of resveratrol and alcofol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci. 64: 2511-2521.
Gambelli, L., and G. P. Santaroni. 2004. Polyphenols content in some Italian red wines of different geographical origins. Journal of Food Composition and Analysis 17: 613-618.
Gambuti, A., D. Strollo, M. Ugliano, L. Lecce, and L. Moio. 2004. trans-Resveratrol, quercetin, (+)-catechin, and (-)-epicatechin content in south italian monovarietal wines: relationship with maceration time and marc pressing during winemaking. J. Agric. Food Chem. 52: 5747-5751.
Gao, L. Y., Q. C. Chu, and J. N. Ye. 2002. Determination of trans-resveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection. Food Chem. 78: 255-260.
Goldberg, D. M., A. Karumanchiri, E. Ng, J. Yan, E. P. Diamandis, and G. J. Soleas. 1995a. Direct gas chromatographic-mass spectrometric method to assay cis-resveratrol in wines: Preliminary survey of it concentration in commercial wines. J. Agric. Food Chem. 43: 1245-1250.
Goldberg, D. M., A. Karumanchiri, J. Yan, E. Ng, E. P. Diamandis, and G. J. Soleas. 1995b. Assay of resveratrol glucosides and isomers in wine by direct-injection high-performance liquid chromatography. J. Chromatogr. A 708: 89-98.
Goldberg, D. M., E. Tsang, A. Karumanchiri, E. P. Diamandis, G. Soleas, and E. Ng. 1996. Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal. Chem. 68: 1688-1694.
Gu, X., L. Creasy, A. Kester, and M. Zeece. 1999. Capillary electrophoretic determination of resveratrol in wines. J. Agric. Food Chem. 47: 3223-3227.
Gu, X., Q. Chu, M. O’Dwyer, and M. Zeece. 2000. Analysis of esveratrol in wine by capillary electrophoresis. J. Chromatogr. A 881: 471-481.
Gürbüz, O., D. Göçmen, F. Dağdelen, M. Gürsoy, S. Aydin, İ. Şahin, L. Büyükuysal, and M. Usta. 2007. Determination of flavan-3-ols and trans-resveratrol in grapes and wine using HPLC with fluorescence detection. Food Chem. 100: 518-525.
Hale, S. L., and R. A. Kloner. 2001. Effects of resveratrol, a flavonoid found in red wine, on infarct size in an experimental model. J. Stud. Alcohol 62: 730-735.
Hathway, D. E. 1962. The use of hydroxystilbene compounds as axonomic tracers in the genus Eucalyptus. Biochem J. 83: 80-84.
Inoshiri, S., M. Sasaki, H. Kohda, H. Otsuka, and K. Yamasaki. 1987. Aromatic glycosides from Berchemia racemosa. Phytochem. 26: 2811-2814.
Jang, M., L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Metha, R. C. Moon, and J. M. Pezzuto. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220.
Jeandet, P., R. Bessis, and B. Gautheron. 1991. The production of resveratrol (3, 5, 4´-trihydroxystilbene) by grape berries in different developmental stages. Am. J. Enol. Vitic. 42: 41-46.
Jeandet, P., R. Bessis, B. F. Maume, and M. Sbaghi. 1993. Analysis of resveratrol in Burgundy wines. J. Wine Res. 4: 79-85.
Jeandet, P., R. Bessis, M. Sbaghi, and P. Meunier. 1994. Occurrence of a resveratrol p-D-glucoside in wine. Preliminary results. Vitis 33: 183-184.
Jeandet, P., R. Bessis, M. Sbaghi, P. Meunier, and P. Trollat. 1995. Resveratrol content of wines of different ages: Relationship with fungal disease pressure in the vineyard. Am. J. Enol. Vitic. 46: 1-4.
Jiménez Sánchez, J. B., E. Crespo Corral, M. J. Santos Delgado, J. M. Orea, and A. González Ureña. 2005. Analysis of trans-resveratrol by laser ionization mass spectrometry and HPLC with fluorescence detection comparison between both techniques. J. Chromatogr. A 1074: 133-138.
Kelloff, G. J., J. A. Crowell, V. E. Steele, R. A. Lubet, W. A. Malone, C. W. Boone, et al. 2000. Progress in cancer chemoprevention: development of dietderived chemopreventive agents. J. Nutr. 130: 467S-471S.
Kolouchova-Hanzlikova, I., K. Melzoch, V. Filip, and J. Smidrkal. 2004. Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chem. 87: 151-158.
Langcake, P., and R. J. Pryce. 1976a. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochem. 16: 1193-1196.
Langcake, P., and C. A. Pryce. 1976b. The production of resveratrol by Vitis vinifera and other members of Vitaceae as a response to infection or injury. Physio. Plant Path. 9: 77-85.
Langcake, P., and R. J. Pryce. 1977. A new class of phytoalexins from grapevines. Experientia 33: 151-152.
Langcake, P., and R. J. Pryce. 1977. Production of resveratrol and viniferins by grapevines in response to UV irradiation. Phytochem. 16: 1193-1196.
Lee, S. E., H. J. Hwang, S. J. Ha, H. S. Jeong, and S. H. Kim. 2003. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 73: 167-179.
Leyi, G., C. Qingcui, and Y. Jiannong. 2002. Determination of trans-resveratrol in wine, herbs and health food by capillary electrophoresis with electrochemical detection. Food Chem. 78: 255-260.
Li, Z., S. Bowerman, and D. Heber. 2005. Health ramifications of the obesity epidemic. Surg. Clin. North Am. 85: 681-701.
Likhitwitayawuid, K., K. Sawasdee, and K. Kirtikara. 2002. Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Planta Med, 68: 841-843.
Martinez-Ortega, M. V., M. C. Garcia-Parrilla, and A. M. Troncoso. 2000. Resveratrol content in wines and musts from the south of Spain. Nahrung, 44: 253-256.
Matsuda, H., N. Tomohiro, K. Hiraba, S. Harima, S. Ko, K. Matsuo, et al. 2001. Study on anti-Oketsu activity of rhubarb II. Anti-allergic effects of stilbene components from Rhei undulati Rhizoma (dried rhizome of Rheum undulatum cultivated in Korea). Biol. Pharm. Bull. 24: 2642-67.
Matsuda, H., H. Shimoda, T. Morikawa, and M. Yoshikawa. 2001. Phytoestrogens from the roots of Polygonum cuspidatum (polygonaceae): structure-requirement of hydroxyanthraquinones for estrogenic activity. Bioorg. Med. Chem. Lett. 11: 1839-1842.
Mitjans, M., J. del Campo, C. Abajo, V. Martinez, A. Selga, C. Lozano, et al. 2004. Immunomodulatory activity of a new family of antioxidants obtained from grape polyphenols. J. Agric. Food Chem. 52: 7297-7299.
Monagas, M., B. Bartolome, and C. Gomez-Cordoves. 2005. Updated knowledge about the presence of phenolic compounds in wine. Critical Reviews in Food Science and Nutrition 45: 85-118.
Nonaka, G. I., E. Ezakai, K. Hayashi, and I. Nishioka. 1983. Flavanol glucosides from rhubarb and Rhaphiolepis umbellate. Phytochem. 22: 1659-1661.
Nonomura, S., H. Kanagawa, and A. Makimoto. 1963. Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-J O-Kon. (Polygonum cuspidatum Sieb Et Zucc.). Yakugaku Zasshi 83: 988-990.
Oleszek, W., M. Sitek, A. Stochmal, S. Piacente, C. Pizza, and P. Cheeke. 2001. Resveratrol and other phenolics from the bark of Yucca schidigera roezl. J. Agric. Food Chem. 49: 747-752.
Pace-Asciak, C. R., S. E. Hahn, E. P. Diamandis, G. Soleas, and D. M. Goldberg. 1995. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin. Chim. Acta. 235: 207-219.
Padilla, E., E. Ruiz, S. Redondo, A. Gordillo-Moscoso, K. Slowing, and T. Tejerina. 2005. Relationship between vasodilation capacity and phenolic content of Spanish wines. European Journal of Pharmacology 517: 84-91.
Park Cheol-Soo, Lee Young-Choon, Kim Jong-Dae, Kim Hyung-Min, Kim Cheorl-Ho. 2004. Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component resveratrol on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vascular Pharmacology 40: 279-284.
Patra, A., B. Rai, G. R. Rout, and P. Das. 1998. Successful plant regeneration from callus cultures of Centella asiatica (Linn.) Urban. Plant Growth Regul. 24: 13-16.
Peng, Y., Q. Chu, and J. Ye. 2004. Determination of trans-resveratrol and piceid in Polygonum cuspidatum Sied. et Zucc. by capillary zone electrophoresis. American Laboratory, 40-44.
Renaud, S. and M. de Lorgeril. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339: 1523-1526.
Rimando, A. M., W. Kalt, J. B. Magee, J. Dewey, and J. R. Ballington. 2004. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 52: 4713-4719.
Rodriguez-Delgado, M. A., G. Gonzalez, J. P. Perez-Trujillo, and F. J. Garcia-Montelongo. 2002. trans-Rresveratrol in wines from the Canary Islands (Spain). Analysis by high performance liquid chromatography. Food Chem. 76: 371-375.
Rudolf, J. L., A. V. A. Resurreccion, F. K. Saalia, and R. D. Phillips. 2005. Development of a reverse-phase high-performance liquid chromatography method for analyzing trans-resveratrol in peanut kernels. Food Chem. 89: 623-638.
Sanders, T. H., R.W. Jr. McMichael and K. W. Hendrix. 2000. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 48: 1243-1246.
Saucier, C. T., and A. L. Waterhouse. 1999. Synergetic activity of catechin and other antioxidants. J. Agric. Food Chem. 47: 4491-4494.
Scalbert, A., and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073S-2085S.
Sieman, E. H., and L. L. Creasy. 1992. Concentration of phytoalexin resveratrol in wine. Am. J. Enol. Vitic. 43: 49-52.
Signorelli, P., and R. Ghidoni. 2005. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J. Nutr. Biochem. 16: 449-466.
Snyder, L. R., J. J. Kirkland, and J. L. Glajch. 1997. Practical HPLC method development (pp. 24, 27-29, 77-79, 82, 234 268, 367-369, 413, 426, 433-437, 646, 687-695) (2nd ed.). New York: John Wiley and Sons Inc.
Soleas, G. J., D. M. Goldberg, E. Ng, A. Karumanchiri, E. Tsang, and E. P. Diamandis. 1997. Comparative evaluation of four methods for assay of cis- and trans- resveratrol. Am. J. Enol. Vitic. 48: 169-176.
Somani, S. M., K. Husain, and E. C. Schlorff. 1997. Response of antioxidant system to physical and chemical stress. In Oxidants, Antioxidants, and Free Radicals; Baskin, S. I., Salem, H., Eds.; Taylor and Francis: Washington, DC. p. 125-141.
Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780.
Thompson, R. S., D. Jacques, E. Haslam, and R. J. N. Tanner. 1972. Plant proanthocyanidins. I. Introduction; the isolation, structure, and distribution in nature of plant procyani dins. J. Chem. Soc. 11: 1387-1399.
Trela, B. C., and A. L. Waterhouse. 1996. Resveratrol: isomeric molar absorptivities and stability. J. Agric. Food Chem. 44: 1253-1257.
Threlfall, R. T., J. R. Morris, and A. Mauromoustakos. 1999. Effect of variety, ultraviolet light exposure, and enological methods on the trans-resveratrol level of wine. Am. J. Enol. Vitic. 50: 57-64.
Twyman, R. M., E. Stoger, S. Schillberg, P. Christou, and R. Fischer. 2003. Molecular farming in plants: host systems and expression technology. TRENDS in Biotechnology 21: 570-578.
Ulrich, S., F. Wolter, and J. M. Stein. 2005. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol. Nutr. Food Res. 49: 452-461.
Vian, M. A., V. Tomao, S. Gallet, P. O. Coulomb, and J. M. Lacombe. 2005. Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using chromolith columns. J. Chromatogr. A 1085: 224-229.
Vinas, P., C. Lopez-Erroz, J. J. Marin-Hernandez, and M. Hernandez- Cordoba. 2000. Determination of phenols in wines by liquid chromatography with photodiode array and fluorescence detection. J. Chromatogr. A 871: 85-93.
Vitrac, X., J. P. Monti, J. Vercauteren, G. Deffieux, and J. M. Merillon. 2002. Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal. Chim. Acta, 458: 103-110.
Waffo Teguo, P., B. Fauconneau, G. Deffieux, F. Huguet, J. Vercauteren, and J. M. Merillon. 1998. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 61: 655-657.
Wang, Z., Y. Huang, J. Zou, K. Cao, Y. Xu, and J.M. Wu. 2002. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int. J. Mol. Med. 9: 77-79.
Waterhouse, A.L., and R.M. Lamuela-Raventos. 1994. The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochem. 37: 571-573.
Webb, K. J., and H. E. Street. 1977. Morphogenesis in vitro of Pinus and Picea. Acta Hort. 78:259-269.
Xiao, K., L. Xuan, Y. Xu, D. Bai, and D. Zhong. 2002. Constituents from Polygonum cuspidatum. Chem. Pharm. Bull. 50: 605-608.
Yang, F., T. Zhang, and Y. Ito. 2001. Large-scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. J. Chromatogr. A 919: 443-448.
Yoshikawa, M., Y. Uemura, H. Shimoda, A. Kishi, Y. Kawahara, and H. Matsuda. 2000. Medicinal foodstuffs: XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIII. (Parsley) and structures of 6´-acetylapiin and a new monoterpene glycoside, petroside. Chem. Pharm. Bull. 48: 1039-1044.
Zhou, H., H. Cui, G. H. Wan, H. Xu, Y. Q. Pang, and C. F. Duan. 2004. Direct analysis of trans-resveratrol in red wine by high performance liquid chromatography with chemiluminescent detection. Food Chem. 88: 613-620.
Zhu, H. 2001. Determination of resveratrol concentration in Polygonum cuspidatum Sieb. et Zucc. with HPLC. Zhongguo Yesheng Zhiwu Ziyuan, 20: 49-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔