1. 吳漢銘,降維法在醫學影像分割及微陣列資料分類上的統計應用,國立交通大學統計所,民國92年。2. 邱學源,導光板品質自動檢測系統之研製,國立高雄第一科技大學碩士論文,機械與自動化工程系,民國93年。3. 洪永慶,以FPGA實現離散小波轉換並應用於影音壓縮,國立成功大學工程科學研究所,民國92年。4. 高弋翔,應用支向機於銅箔基板缺陷分類之研究,明新科技大學工程管理研究所碩士論文,民國95年。5. 郭振鵬,以系統單晶片做印刷電路板銅箔缺陷檢測系統之設計,國立成功大學電機工程研究所,民國93年。6. 陳雅慧,以基因演算法為基礎建立網頁自動分類機制,中華大學資訊工程系碩士論文,民國92年。7. 陳豪宇,以元件為基礎之人臉辨識,國立交通大學資訊工程系碩士論文,民國91年。8. 黃安橦,應用支向機於晶圓圖分類之研究,明新科技大學工程管理研究所碩士論文,民國94年。9. 馮芝瑋,以支援向量機為基礎之三維臉型識別,長庚大學資訊工程研究所碩士論文,民國91年。10. 劉雅光,乳癌超音波影像電腦輔助診斷之研究,東海大學訊工程與科學系碩士論文,民國93年。11. 謝東宏,運用支向機於華語單音節混淆音組辨認之初步研究,長庚大學電機工程研究所碩士論文,民國91年。12. 繆紹綱 (編著),數位影像處理-(活用Matlab),全華科技圖書股份有限公司,民國93年。
13. 繆紹綱 (編著),數位影像處理,高立圖書股份有限公司,民國92年。
14. 韓歆儀,應用兩階段分類法提昇SVM法之分類準確率,國立成功大學工業管理科學系碩士論文,民國93年。15. 蘇國瑞,一種使用正交小波表示之影像檢索方法,國立中正大學資訊工程研究所,民國92年。
16. Amet, A. L., A. Ertuzun, and A. Ercil, “Texture defect detection using subband domain co-occurrence matrices”, Image Anal. Interpretation Vol. 1, 1998, pp. 205–210.
17. Arivazhagan, S. and L. Ganesan, “Texture segmentation using wavelet transform”, Pattern Recognition Letters Vol. 24, 2003, pp. 3197-3203.
18. Bileschi, S. M., and Heisele, Bernd., “Advances in component-based face detection”, Pattern Recognition with Support Vector Machines : first International Workshop, 2002, pp. 135-143.
19. Boser, B. E., I. M. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers”, In Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, 1992.
20. Cao, L. J. and F. E. H. Tay, “Support vector machine with adaptive parameters in financial time series forecasting”, IEEE Transactions on Neural Networks, Vol. 14, No. 6, 2003, pp. 1506 -1518.
21. Conners, R. W., C.W. McMillin, K. Lin, and R.E. Vasquez-Espinosa, “Identifying and locating surface defects in wood”, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI Vol. 5, 1983, pp. 573–583.
22. David, A. and B. Lerner, “Pattern classification using a support vector machine for genetic disease diagnosis”, Electrical and Electronics Engineers in Israel, 23rd IEEE Convention of Proceedings, 2004, pp. 289-292.
23. Fletcher, R., “Practical Methods of Optimization”, John Wiley and Sons, Inc, 2nd edition, 1987.
24. Friedman, J., “Another approach to polychotomous classification”, Technical report, Department of Statistics, Stanford University, 1996.
25. Grossmann, A. and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape”, SIAM J. Math. Vol. 15, 1984, pp. 723-736.
26. Haralick, R. M., K. Shanmugam, and I. Dinstein, “Textural features for image classification”, IEEE Transactions on Systems, Man and Cybernetics Vol. 3, 1973, pp. 610–621.
27. Lambert, G., and F. Bock, “Wavelet method for texture defect detection, IEEE Int. Conf. Image Process”, Santa Barbara, CA 3, 1997, pp. 201–204.
28. Lemarie, P.G., Y. Meyer, and Ondelettes et “bases Hilbertiennes”, Rev. Mat. Ibero Americana Vol. 2, 1986, pp. 1-18.
29. Liu, S. S. and M.E. Jernigan, “Texture analysis and discrimination in additive noise”, Computer Vision, Graphics and Image Processing Vol. 49, 1990, pp. 52–67.
30. Naqa, I., Yongyi, Yang., M. N. Wernick, N. P. Galatsanos, and R. M. Nishikawa, “A support vector machine approach for detection of microcalcifications”, IEEE Transactions on Medical Imaging, Vol. 21, No. 12 , 2002, pp. 1552 -1563.
31. Nello, C. J., and T. Shave, “An introduction to Support Vector Machines and other kernel-based learning methods”, Cambridge university press, 2000.
32. Pichler, O., A. Teuner, and B. J. Hosticka, “A comparison of texture feature extraction using adaptive Gabor ltering, pyramidal and tree structured wavelet transforms”, Pattern Recognition Vol. 29, 1996, pp. 733-742.
33. Ramana, K.V. and B. Ramamoorthy, “Statistical methods to compare the texture features of machined surfaces”, Pattern Recognition Vol. 29, 1996, pp. 1447–1459.
34. Roman W. Swiniarski and Andrzej Skowron., “Rough set methods in feature selection and recognition”, Pattern Recognition Letters, Vol. 24, 2003, pp. 833-849.
35. Roman W. Swiniarski and Larry Hargis., “Rough sets as a front end of neural-networks texture classifiers”, Neurocomputing, Vol. 36, 2001, pp. 85-102.
36. Shen, Qiang and Richard Jensen., “Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring”, Pattern Recognition, Vol. 37, 2004, pp. 1351-1363.
37. Siew, L. H. and R.M. Hogdson, “Texture measures for carpet wear assessment”, IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 10, 1988, pp. 92–105.
38. Tsai, D. M. and C. Y. Hsieh, “Automated surface inspection for directional textures”, Image and Vision Computing, Vol. 18, 1999 pp. 49-62.
39. Tsai, Du-Ming and Tse-Yun Huang, “Automated surface inspection for statistical textures”, Image and Vision Computing, Vol. 21, 2003, pp. 307-323.
40. Vapnik, V., “Statistical Learning Theory”, Wiley, 1998.
41. Walczak, B. and D. L. Massart, “Tutorial Rough Sets Theory”, Chemometricsand Intelligent Laboratory Systems, Vol. 47, 1999, pp.1-16.
42. Zeng, Xiangyang and Yanmei Zhan., “Development of a noise sources classification system based on new method for feature selection” Applied Acoustics, Vol. 66, 2005, pp. 1196-1205.