(54.236.58.220) 您好!臺灣時間:2021/03/08 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周愉恆
研究生(外文):Yu-Heng Chou
論文名稱:由雙親性嵌段共聚物製備半導體奈米複合材料及其形態和特性分析
論文名稱(外文):Synthesis and characterization of semiconductor nanoparticles by the amphiphilic block copolymers
指導教授:簡文鎮簡文鎮引用關係游洋雁
指導教授(外文):Wen-Chen ChienYang-Yen Yu
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:原子轉移自由基聚合法雙親性嵌段共聚物星狀共聚合物PS-b-PMMAPS-b-PMSMA型態學CdS複合膜奈米顆粒奈米組成
外文關鍵詞:ATRPAmphiphilic block copolymerStar block copolymerPS-b-PMMAPS-b-PMSMAMorphologyCdSNanoparticlesNanocomposite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,各種功能性的奈米粒子及奈米複合材料因其在各種產業的應用潛力深受期待,故吸引眾多的研究者投入研究。因此本研究希望能夠同時應用雙親性嵌段共聚物(Amphiphilic block copolymers,ABC)系統探討合成CdS奈米粒子並進而製備奈米複合材料的可行性。雙親性嵌段共聚物已被廣泛應用於半導體奈米粒子之製備,主要是它可藉由分子結構(高分子主鏈上的重複單位、不同親疏水段的鏈段長度)及不同溶劑種類產生特殊型態之微相分離,可用來精準控制奈米粒子之成核及成長。然而,目前以ABC製備奈米粒子尚有下列問題尚待解決:(1)嵌段共聚物分子結構及微胞形態與所合成奈米粒子粒徑大小及分布之關係建立;(2)含奈米粒子之高分子薄膜欠缺耐熱性及機械性質等問題。因此,本研究之目的即是建立雙親性嵌段共聚物的合成方法並探討其自組裝作用下之不同微胞形態的控制;再以此為基礎利用雙親性嵌段共聚物製備半導體粒子CdS並達到控制粒徑大小及分布之目的,並進而製備雙親性嵌段共聚物/無機半導體粒子奈米複合材料。
本研究計畫利用原子轉移自由基聚合法(ATRP)製備不同鏈段比例及分子量之雙親性星狀嵌段共聚物(PS-s-PMMA及PS-s-PMSMA)及不同鏈段比例及分子量之雙親性嵌段共聚物(PS-b-PMSMA);並針對製備條件對共聚高分子之分子量大小、分佈與分子鏈段長度變化的影響加以研究,以建立控制分子量及鏈段長度之方法並探討block鏈段長度及溶劑種類對其所形成微結構形態之關係,並將雙親性嵌段共聚物結合半導體奈米粒子以控制奈米粒子的大小,並探討其對材料之發光效率及顏色調控能力的改變。在雙親性星狀嵌段共聚物的研究方面,以聚苯乙烯高分子為巨起始劑,利用原子轉移自由基聚合(ATRP)技術成功製備出以二乙烯苯(DVB)為核,分別以聚苯乙烯(PS)及聚甲基丙烯酸甲酯(PMMA)或聚苯乙烯(PS)及聚三矽甲氧基甲基丙烯酸甲酯(PMSMA)為臂之兩不同系列之星狀高分子。聚合產物以紅外光譜儀(FTIR)作化學結構分析顯示星狀聚合物確實聚合成功。SEM及TEM結果顯示圓球狀之核體大小約20nm且在適當的條件控制下核體大小分佈可相當均勻。凝膠滲透層析(GPC)結果顯示製備所得之聚合物為分子量分佈指數相當小之星狀聚合物,其PDI值在1.02~1.25之間。差式掃瞄熱熱卡儀(DSC)分析結果顯示,聚苯乙烯星狀聚合物(PS-DVB)之相轉移溫度(Tg)為52oC與其線性聚合物非常接近;且熱重分析儀(TGA)分析結果顯示聚苯乙烯星狀聚合物(PS-DVB)熱裂解溫度(Td)為388oC,比線性聚合體有較高之Td點。在利用原子轉移自由基聚合法製備不同分子量及鏈段長度之PS-b-PMSMA嵌段共聚物的研究方面,GPC結果顯示在適當的操作條件下製備所得之PS-b-PMSMA當其分子量在30,000以下,其分子量分布可控制在1.3以下。另外,此雙親性之PS-b-PMSMA嵌段共聚物的化學結構亦由FTIR及NMR的分析結果證實。SEM圖可看出PS-b-PMSMA嵌段共聚物在油相與水相溶劑中之微胞大小隨PMSMA鏈鍛大小而不同,且微胞中製備所得之CdS的粒徑大小約為4-10nm。UV-Vis及PL的分析結果則顯示本實驗中所得到的懸浮CdS粒子其起始吸收波長(420nm416nm)及發射波長(523509nm)隨CdS在油相溶劑中粒徑漸小(3.88nm3.76nm)而有藍移現象產生與懸浮CdS粒子其起始吸收波長(481nm488nm)及發射波長(508nm514nm)隨CdS在水相溶劑中粒徑增大(7.6nm9.74nm)而有紅移的現象產生。
綜合以上所知,本研究結果顯示ATRP可應用於不同構型之雙親性嵌段共聚物的合成,此共聚物具有良好的分子量控制及熱穩定性,且利用此雙親性嵌段共聚物自組裝所得之不同型態微胞可控制CdS奈米粒子的粒徑大小並進而調控奈米複合薄膜的發光效率及顏色調控能力。
Recently, the functional nanoparticles and nanocomposites are more attractive to researchers, since they exhibit high potential for application in various industries. Amphiphilic block copolymers (ABCs) has widely used in the preparation of semiconductor nanoparticles, because they can prepare the nanoparticles with the desired size and size distribution through the control of the molecular structure (the repeated unit on the main chain of polymer), hydrophilic and hydrophobic length of chain, different kind of solvents of the prepared copolymers. However, there are still some problems needed to be solved for preparing the nanoparticle and nanocomposite from ABCs : (1)the relations of molecular structure and micelles morphologies of block copolymer with the prepared nanoparticle size and size distribution are not completely clear; (2)the composites prepared from nanoparticles show a poor thermal and mechanical properties. Therefore, the purpose of this research is to create a methology for preparing the amphiphilic block copolymers with different structures and self-assembling morphologies, which can be applied to prepare the CdS nanoparticles and amphiphilic block copolymers/CdS nanocomposites.
In this study, the amphiphilic linear and star copolymers, PS-b-PMMA, PS-b-PMSMA, and PS-b-PMSMA, with various molecular weight and block length were successfully synthesized by atom transfer radical polymerization (ATRP). The polystyrene macroinitiator was used to synthesize the amphiphilic block copolymer (PS-PMMA and PS-PMSMA) and heteroarm star copolymer (PS-DVB-PMMA and PS-DVB-PMSMA) by the nodule method. The analysis of FTIR and 1H-NMR confirmed the chemical structure of the prepared copolymers. SEM and TEM results showed that the core size of star copolymer was about 20nm and the size of core can be well controlled under suitable operating conditions. GPC analysis showed that both types of star copolymers had low polydispersity indices in the range of 1.02-1.25. DSC results indicated that PS-DVB star polymers had glass transition temperatures very close to that of the corresponding linear polystyrene. In addition, TGA analysis showed that the PS-DVB star copolymer had a higher decomposition temperature than that of the corresponding linear polystyrene. On the other hand, the results of GPC analysis showed that the molecular weight distribution of the prepared PS-b-PMSMA could be controlled to be lower than 1.3 for the case of molecular weight less than 30,000. The chemical structures of the amphiphilic block copolymers of PS-b-PMSMA were well identified by FTIR and NMR. SEM showed that the lengths of PS and PMSMA segments had a great influence of micelles size in the different solvent. The results of XPS、DES and SCMS analysis indicated that the CdS particles with a size 4-10nm have been successfully prepared in the PS-b-PMSMA composite films. The UV-Vis and PL analysis also revealed that the different solvent of λmax of prepared CdS particles were blue-shift and red-shift as the CdS particle size increased.
The above experiment concluded that the ATRP can be applied to synthesize the amphiphilic star copolymers with various molecular structures, weights, and block lengths. The prepared copolymers show the various self-assembling morphologies in the mixing solvents and have good thermal and mechanical properties. Besides, the CdS nanoparticles can be prepared inside the micelles of copolymers and thus can be further applied to prepare the amphiphilic block copolymers/CdS nanocomposites. The particle size of CdS has a great influence on the optical and optoelectronic properties of nanocomposite films.
中文摘要 I
Abstract III
致謝 V
目錄 VI
表索引 VIII
圖索引 IX
第一章 緒論 1
1-1 星狀聚合體 1
1-2 原子轉移自由基聚合(ATRP) 2
1-3 雙親性嵌段共聚物 7
1-4 半導體奈米晶體 10
1-5 有機/無機奈米複合材料 11
第二章 文獻回顧 14
2-1 原子轉移自由基聚合法(ATRP) 14
2-2 雙親性嵌段共聚物半導體奈米複合材料PS-b-PMSMA/CdS 16
2-3 研究動機 23
第三章 實驗 25
3-1 藥品 25
3-2 實驗儀器 28
3-3 分析儀器 30
3-4 實驗步驟 32
3-4-1 由原子轉移自由基聚合法(ATRP)製備不同構形之雙親性嵌段共聚物 32
3-4-1-1 PS-Br單聚合物之合成 34
3-4-1-2 PS-DVB星狀聚合物之合成 34
3-4-1-3 PS-s-PMMA雙親性星狀嵌段共聚物之合成 35
3-4-1-4 PS-s-PMSMA雙親性星狀嵌段共聚物之合成 35
3-4-1-5 PS-b-PMSMA雙親性嵌段共聚物之合成 38
3-4-2 由雙親性嵌段共聚物製備CdS半導體奈米粒子 39
3-5 樣品檢測 42
3-5-1 化學結構分析 42
3-5-1-1 傅立葉轉換紅外線光譜儀測定(FTIR) 42
3-5-1-2 核磁共振光譜儀測定(1H NMR) 42
3-5-2 分子量測定 43
3-5-2-1 凝膠滲透層析儀測定(GPC) 43
3-5-3 熱穩定性分析 43
3-5-3-1 熱重損失分析儀測試(TGA) 43
3-5-3-2 差式掃描型熱分析儀測試(DSC) 43
3-5-4 薄膜微結構及型態分析 44
3-5-4-1 高解析度場發射掃描式電子顯微鏡觀察(SEM) 44
3-5-4-2 穿透式電子掃描顯微鏡(TEM) 44
3-5-5 吸收與發射性質分析 44
3-5-5-1 紫外光-可見光光譜儀(UV-Vis) 44
3-5-5-2 螢光光譜儀(PL) 45
第四章 以原子轉移自由基聚合法製備雙親性星狀嵌段共聚物(PS-s-PMMA,PS-s-PMSMA)之性質實驗數據分析與討論 46
4-1 傅立葉轉換紅外線光譜儀(FTIR) 46
4-2 核磁共振光譜儀(1H NMR) 48
4-3 凝膠滲透層析儀(GPC) 52
4-4 熱示差掃描熱卡儀(DSC) 54
4-5 熱重損失分析儀(TGA) 59
4-6 掃描式電子顯微鏡(SEM) 61
4-7 穿透式電子掃描顯微鏡(TEM) 66
4-8 分子量/PDI圖 71
4-9 轉化/動力圖 75
4-10 結論 79
第五章 由雙親性嵌段共聚物製備CdS半導體奈米粒子微結構及光電之性質實驗數據與討論 80
5-1 傅立葉轉換紅外線光譜儀(FTIR) 80
5-2 核磁共振光譜儀(1H NMR) 83
5-3 凝膠滲透層析儀測定(GPC) 84
5-4 高解析度場發射掃描式電子顯微鏡觀察(SEM) 84
5-5 穿透式電子掃描顯微鏡(TEM) 94
5-6 紫外光-可見光光譜儀(UV-Vis)與螢光光譜儀(PL) 99
5-7 結論 109
第六章 參考文獻 113

表索引
表1-1 ATRP 聚合體系................................................................................................3
表2-2 L. E. Brus equation 所需常數.......................................................................19
表3-1 (PS)n-s-(PMSMA)m 之組成與反應條件........................................................38
表3-2 (PS)n-(PMSMA)m 之組成與反應條件..........................................................39
表3-3 本研究中的實驗變因與條件..........................................................................40
表5-1 生成的CdS 奈米微粒TEM 與UV/Vis 所得的λedg(UV)、size、band gap.................................................................................................................................108
表5-2 不同鏈段大小及CdS 含量之CdS/PS-b-PMSMA 微胞在DMF 及THF 溶劑中的關係.................................................................................................................. 111
表5-3 不同鏈段大小及CdS 含量之CdS/PS-b-PMSMA 微胞在DMF 及THF 溶劑中的UV、PL 光譜之λedg、λmax、CdS band gap、CdS Diameter、Φ、Life time.................................................................................................................................112

圖索引
圖1-1 (a)核心起始技術與(b)臂鏈起始技術合成星狀高分子.....................................2
圖1-2 原子轉移自由基聚合示意圖............................................................................3
圖1-3 ATRP 反應機制................................................................................................4
圖1-4 常見的溴化物與氯化物起始劑........................................................................5
圖1-5 常見的銅金屬錯合物作為原子轉移自由基聚合之催化劑.............................5
圖1-6 常見原子轉移自由基聚合之配位基(ligand) ...................................................6
圖1-7 一般常見可用於ATRP 聚合之單體................................................................6
圖1-8 線性嵌段共聚物之自組裝形態........................................................................9
圖1-9 分子幾何結構對微胞自組裝形態的影響......................................................10
圖2-1 (a)PS-b-PAA 包覆硫化鎘奈米晶體示意圖;(b)PS-b-PAA 包覆硫化鎘之官能基作用力示意圖.........................................................................................................17
圖2-2 硫化鎘的UV 吸收光譜與粒徑分佈..............................................................18
圖2-3 CdS 的吸、放光光譜與粒徑大小的關係,圓圈處表示激子吸收峰.............20
圖2-4 CdTe、CdSe 和CdS 的粒徑與激子吸收峰位置之關係曲線......................21
圖2-5 各種量子點放光波長與量子點尺寸的關係圖...............................................21
圖2-6 Nagasaki 等人所使用的雙團聯共聚高分子CHO-PEG/PAMA 結構式.......22
圖3-1 由原子轉移自由基聚合法(ATRP)製備雙親性星狀嵌段共聚物PS-s-PMMA,PS-s-PMSMA 及雙親性嵌段共聚物PS-b-PMSMA 之流程圖.......33
圖3-2 PS-Br 合成裝置..............................................................................................36
圖3-3 星狀聚合物之合成反應示意圖......................................................................36
圖3-4 PS-DVB 星狀聚合物之合成反應式................................................................37
圖3-5 PS-s-PMMA 雙親性星狀嵌段共聚物之合成反應式.....................................37
圖3-6 PS-s-PMSMA 雙親性星狀嵌段共聚物之合成反應式...................................38
圖3-7 PS-b-PMSMA/CdS 雙親性嵌段共聚物半導體奈米複合材料之流程圖.......41
圖4-1 PS-Br、PS-DVB、PS-s-PMMA 及PS-s-PMSMA 星狀聚合體的FTIR 光譜圖...............................................................................................................................47
圖4-2 PS-Br 巨起始劑之1H-NMR 光譜圖............................49
圖4-3 PS-DVB 星狀聚合物之1H-NMR 光譜圖.......................................................50
圖4-4 PS-s-PMMA 星狀聚合物之1H-NMR 光譜圖................................................51
圖4-5 PS-Br、PS-DVB、PS-s-PMMA 及PS-s-PMSMA 雙親性星狀嵌段共聚物之分子量隨著反應時間的變化情形..............................................................................53
圖4-6 PS-Br 之DSC 曲線(升溫速度:5℃/min)......................................................55
圖4-7 PS-DVB 之DSC 曲線(升溫速度:5℃/min)..................................................56
圖4-8 PS-s-PMMA 之DSC 曲線(升溫速度:5℃/min)...........................................57
圖4-9 PS-s-PMSMA 之DSC 曲線(升溫速度:5℃/min).........................................58
圖4-10 PS-Br、PS-DVB、PS-s-PMMA 及PS-s-PMSMA 之TGA 曲線...............60
圖4-11 PS-Br 之SEM 圖 Mw=5400 ........................................................................62
圖4-12 PS-DVB 之SEM 圖 Mw=37000 ..................................................................63
圖4-13 PS-s-PMMA 之SEM 圖 Mw=131644 .........................................................64
圖4-14 PS-s-PMSMA 之SEM 圖 Mw=131556 .......................................................65
圖4-15 PS-Br 之TEM 圖 Mw=5400 .......................................................................67
圖4-16 PS-DVB 之TEM 圖 Mw=37000..................................................................68
圖4-17 PS-s-PMMA 之TEM 圖 Mw=131644.........................................................69
圖4-18 PS-s-PMSMA 之TEM 圖 Mw=131556 ......................................................70
圖4-19 PS-DVB 之分子量/PDI 圖............................................................................72
圖4-20 PS-s-PMMA 之分子量/PDI 圖.....................................................................73
圖4-21 PS-s-PMSMA 之分子量/PDI 圖...................................................................74
圖4-22 PS-DVB 之轉化/動力圖................................................................................76
圖4-23 PS-s-PMMA 之轉化/動力圖.........................................................................77
圖4-24 PS-s-PMSMA 之轉化/動力圖.......................................................................78
圖5-1 (a)PS-b-PMSMA 複合膜之FTIR 圖.............................................................81
圖5-1 (b)PS-b-PMSMA /Cd2+複合膜之FTIR 圖.....................................................82
圖5-2 PS-b-PMSMA 之1H-NMR 圖譜...................................................................83
圖5-3 PS 及 PS-b-PMSMA 之GPC 圖...................................................................84
圖5-4 (a)(PS)40-b-(PMSMA)60 在THF 溶劑中所形成之混成膜之SEM 圖............86
圖5-4 (b)(PS)40-b-(PMSMA)75 在THF 溶劑中所形成之混成膜之SEM 圖...........87
圖5-4 (c)(PS)40-b-(PMSMA)90 在THF 溶劑中所形成之混成膜之SEM 圖............88
圖5-4 (d)(PS)40-b-(PMSMA)60 在DMF 溶劑中所形成之混成膜之SEM 圖...........89
圖5-4 (e)(PS)40-b-(PMSMA)75 在DMF 溶劑中所形成之混成膜之SEM 圖...........90
圖5-4 (f)(PS)40-b-(PMSMA)90 在DMF 溶劑中所形成之混成膜之SEM 圖...........91
圖5-5 (a)CdS/PS-b-PMSMA 在THF 溶劑複合膜不同Cd:S 比例下之 SEM 圖92
圖5-5 (b)CdS/PS-b-PMSMA 在DMF 溶劑複合膜不同Cd:S 比例下之 SEM 圖...................................................................................................................................93
圖5-6 (a)為(PS)40-b-(PMSMA)60 在THF 溶劑中之混合溶液 TEM 圖..................95
圖5-6 (b)為(PS)40-b-(PMSMA)60 在THF 溶劑中之混合溶液 SEM 圖..................96
圖5-7 (a)為CdS/PS-b-PMSMA 在THF 溶劑下之 TEM 圖..................................97
圖5-7 (b)為CdS/PS-b-PMSMA 在DMF 溶劑下之 TEM 圖.................................98
圖5-8 (a)為CdS/PS-b-PMSMA 微胞複合膜在THF 之UV-vis 及PL 光譜圖.....101
圖5-8 (b)為CdS/PS-b-PMSMA 微胞複合膜在DMF 之UV-vis 及PL 光譜圖....102
圖5-9 Henglein’s empirical curve ...........................................................................103
圖5-10 (a)為Cd:S=1:2 之CdS/PS-b-PMSMA 微胞複合膜在THF 之PL 光譜圖.................................................................................................................................104
圖5-10 (b)為Cd:S=1:2 之CdS/PS-b-PMSMA 微胞複合膜在DMF 之PL 光譜圖.................................................................................................................................105
圖5-10 (c)為PMSMA(75)之CdS/PS(40)-b-PMSMA(75)微胞複合膜在THF 之PL光譜圖......................................................................................................................106
圖5-10 (d)為PMSMA(75)之CdS/PS(40)-b-PMSMA(75)微胞複合膜在DMF 之PL 光譜圖..........................................................................................................................107
圖5-11 CdS 示意圖.................................................................................................. 111
第六章參考文獻
1. X. Yijin, P. Caiyuan, Macromolecules. 33(13), 4750 -4756, 2000.
2. J.-S. Wang, K. Matyjaszewski, J. Am. Chem. Soc. 117(20), 5614-5615, 1995.
3. M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev. 101(12), 3689-3746, 2001.
4. K. Matyjaszewski, J. Xia, Chem. Rev. 101(9), 2921-2990, 2001.
5. N. Takeda, S. Inoue, Macromol. Chem. Phys. 179(5), 1377 -1381, 1978.
6. G. G. Odian, Principles of Polymerization, 3 rd edition, Wiley-Interscience, New York, ch.5, 1991.
7. T. W. Chung, K. Y. Cho, H. C. Lee, J. W. Na h, J. H. Yeo, T. Akaike, C. S. Cho, Polymer. 45(5), 1591-1597, 2004.
8. S. K. Jewrajka, U. Chatterjee, J. polym. sci., A, Polym. chem. 44(6) 1841-1854, 2006.
9. C. C. Yang, P. T. Wu, W. C. Chen, H. L. Chen, Polymer. 45(16) 5691 -5702, 2004.
10. M. Pitsikalis, S. Pispas, J. W. Mays and N. Hadjichristidis, Adv. Polym. Sci. 135,1-137 ,1998
11. S. Förster, M. Antonietti, Adv. Mater. 10(3) 195-217,1998
12. T. Shimizu, M. Masuda, and H. Minamikawa, Chem. Rev. 105(4) 1401-1444,2005
13. 賴芷伶,“混摻團聯式共聚高分子在液態中藉由氫鍵形成之自組裝行為研究”,交通大學應用化學所,碩士論文2006.
14. F. Robert, Science. 282, 2179-2178,1998.
15. L.E. Brus, Al.L. Efros and T. Itoh J. Lumin. vii 70, R7-R8,1996. 114
16. H. Weller, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 354, 757, 1996.
17. H. Gleiter, Prog. Mater. Sci. 33, 223-315,1989.
18. J .Horvath, Defect Diffus Forum. 66-69, 207-227, 1989.
19. J.Horvath, R .Birringer, H.Gleiter, Solid. State. Commun.62,319-322,1987
20. R. Birringer, H. T. Hahn, H.J. Höfler, J. Karch, H. Gleiter ,Defect Diffus. Forum. 59, 17-23,1988
21. A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science. 256,1425,1992.
22. P. Buffat, J-P. Borel, Phys. Rev. A, 13(6), 2287-2298, 1976.
23. J. Rupp, Birringer, R. Phys. Rev. B, 36(15), 7888-7890, 1987.
24. E. Hellstern, H. Fecht, Z. Fu, W. L. Johnson, J. Appl. Phys. 65(1), 305-310,1989
25. Y. Z.Wang, G. W.Qiao, X. D.Liu, B. Z. Ding, Z. Q. Hu, Mater. Lett.1993, 17(3-4), 152-154.
26. K. Lu, Y. Z. Wang, W. D.Wei, Y. Y. Li, Adv. Cryog. Mater. 38, 285-291, 1991.
27. F. Ciardelli, E. Tsuchida, D. Wöhrle, Berline:Springer .1996
28. Ayyappan, S.; Gopalan, R. S.; Sub banna, G. N.; Rao, G. N. R. J. Mater. Res.1997, 2(2), 398-401, 398
29. Steigerwald, M. L.; Brus, L. E. Accounts Chem. Res. 23(6), 183-188,1990.
30. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. Annu. Rev. Phys. Chem.41, 477-496, 1990.
31. H.Weller, Angew. Chem. Int. Ed. 32(1), 41-53, 1993.
32. Weller, H. Adv. Mater.5(2), 88-95,1993.
33. A. Hagfeldt, M.Grätzel, Chem. Rev. 95(1), 49-68,1995.
34. J. H. Fendler, F. C. Meldrum, Adv. Mater. 7(7), 607-632, 1995.
35. A. P. Alivisatos, J. Phys. Chem. 100(31), 13226-13239, 1996.
36. M. Alexandre, P. Dubois, Mater. Sci. Eng. R-Rep. 28(1-2), 1-63, 2000.
37. M. Biswas, S. S. Ray, Adv. Polym. Sci. 155, 167-221, 2001.
38. P. Emmanuel, Giannelis, Adv. Mater, 8(1), 29-35, 1996.
39. J. Wen, G. L. Wilkes, Chem. Mat. 8(8), 1667-1681 ,1996.
40. B. Yoza, M. Matsumoto, T. Mat sunaga, J. Biotechnol. 94(3), 217-224,2002.
41. L. Manziek, E. langenmayr, A. Lamola, M. Gallagher, N. Brese, N. Annan, Chem. Mater. 10(10), 3101-3108, 1998.
42. J. Zhang, N. Coombs, E. Kumacheva, J. Am. Chem. Soc., 124(49), 14513-14513, 2002.
43. J. Zhang, N. Coombs, E. Kumacheva, Y. Lin, E. H. Sargent, Adv. Mater. 14(23), 1756-1759, 2002.
44. Q. Zhao, W. Chen, Q Zhu, Mater. Lett., 57(11), 1756-1758 ,2003.
45. D. Wang, Y. Cao, X. Zhang, Z. Liu, X. Qian, X. Ai, F. Liu, D. Wang, Y. Bai, T. Li, X, Tang, Chem. Mater., 11(2), 392-398,1999.
46. Z. X. Deng, L. Li, Y. Li, Inorg. Chem., 42(7), 2331-2341, 2003.
47. S. Susha, F. Caruso, A. L. Rogach, G. B. Sukhorukov, A. Kornowski, H. Möhwold, M. Giersig, A. Eychmüller, H. Weller, Colloid Surf. A-Physicochem. Eng. Asp. 163(1), 39-44 ,2000.
48. Henglein, A. Chem Rev. 89(8), 1861-1873, 1989.
49. A. W. Bosman, R. Vestberg, A. Heumann, J. M. J. Fréchet, and C. J. Hawker, J. Am. Chem. Soc. 125(3) 715-728 ,2003.
50. K. Matyjaszewski, S. Qin, J. R. Boyce, D. Shirvanyants, and S. S. Sheiko, Macromolecules. 36(6) 1843-1849 ,2003.
51. Q. Wu, J. Membr. Sci. 172(1-2), 199-201,2000.
52. J. Zhu, M. Zhou, J. Xu, X. Liao, Mater. Lett., 47(1-2), 25-2,2001.
53. D. Wu, X. Ge, Y. Huang, Z. Zhang, Q. Ye, Mater. Lett., 57(22-23), 3549-3553,2003.
54. S. D. Wu, Z. Zhu, Z. Zhang, L. Zhang, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 90(1-2), 206-208,2002.
55. J. H. Zeng, Yu. Zhu, Y. F. Liu, J. Yang, Y. T. Quia, H. G. Zheng, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 94(2 -3), 131-135,2002.
56. J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian, Chem. Mater., 12(11), 3259-3263 ,2000.
57. K. Murakoshi, H. Hosokuwa, M. Saitoh, Y. Wada, T. Sakata, H.Mori, M. Satoh, S. Yanagida, J. Chem. Soc. Faraday Trans., 94(4), 579-586,1998.
58. J. Du ,Y.Chen, J. Polym. Sci. Pol. Chem. 42(9),2263-2271,2004.
59. C. W. Wang, M. G. Moffitt, Langmuir, 20(26), 11784-11796, 2004.
60. R. M. Silverstein,賀孝雍, Spectrometric Identification of Organic Compounds, 第四版, 台北/眾光, 民78(1989).
61. C. B.Murray, D. J. Norns, M. G. Bawendi, J. Am. Chem. Soc. 115(19), 8706-8715, 1993.
62. L. E. Brus, J. Am. Chem. Soc. 110(10), 3046-3050, 1988.
63. L. E. Brus, J. Chem. Phys. 79(11), 5566-5571,1983.
64. L. E. Brus, J. Chem. Phys. 80(9), 4403-4409,1984.
65. N. Chestnoy, T. D. Harris, R. Hull, L. E. Brus , J. Phys. Chem. 90 (15), 3393–3399, 1986.
66. W. W. Yu, X. Peng, Angew. Chem. Int. Ed. 41(13), 2368-2371 ,2002.
67. W. W. Yu, L. Q. W. Guo, X. Peng, Chem. Mater. 15(14), 2854-2860 ,2003.
68. R. He, X. Qian, J. Yin, H. Xi, L. Bian , Z. Zhu, Colloid Surf. A-Physicochem. Eng. Asp. 220(1-3), 151-157,2003.
69. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G.Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science. 307(5709), 538-5442005.
70. H. Bao, Y. Gong, Z. Li, M. Gao, Chem. Mater. 16(20), 3853-3859, 2004.
71. J. X. Yao, G. L. Zhao, G. R. Han, Microelectron. Eng. 66(1-4), 115-120, 2003.
72. T. Trindade, Chem. Mater. 13(11), 3843-3858, 2001.
73. P. Moschogiann, S. Pispa, J. Polym. Sci. Polym. Chem. 39(5), 650-655, 2001.
74. K. Hirao, Kawasai, Sci. Technol. Adv. Mater. 5(4), 469-477, 2004.
75. P. Moschogiann, S. Pispa, J. Polym. Sci. Polym. Chem. 37, 85, 1999.
76. S. Brunacci, F.T. Kiff, R.W. Richards, R. L. Thompson, S.M. King, Polymer, 41(7), 2557-2567, 2000.
77. K. Ishizu, H. Takeda, T. Furukawa, Polymer, 41(23), 8229-8304,2000.
78. J. Du, Y. Chen, Macromolecules, 37(10), 3588-3594,2004.
79. C. F. Huang, H. F. Lee, S. W. Kuo, H. Xu, F. C. Chang, Polymer, 45(7), 2261-2269, 2004.
80. Stéphanie Angot, Daniel Taton, and Yves Gnanou , Macromolecules, 33(15), 5418-5426, 2000.
81. D. M. Knauss , H. Tianzi,Macromolecules, 35(6), 2055-2062, 2002.
82. X. S. Feng , C. Y. Pan, Macromolecules, 35(6), 2084-2089, 2002.
83. X. Yijin and P. Caiyuan, Macromolecules, 33(13), 4750-4756, 2000.
84. Y. Xu, C. Pan, J. Polym. Sci. Part A: Polym Chem, 38(2), 337-344, 2000.
85. S. Coca, K. Matyjaszewski, J. Polym. Sci. Part A: Polym 3. 25(16), 3595-3601, 2000.
86. 王薏婷、王宗櫚、黃芳榮、王冠卜,國立高雄應用科技大學化工系,利用結塊法及原子轉移自由基聚合技術進行星狀聚合體之研究, Proceedings of the 26th ROC Polymer Symposium, BP -1-31.
87. Jianzhong Du ,Yongming Chen, Macromolecules. 37 (10), 3588–3594, 2004.
88. I. Brandrup, E. H. Lmmergut, Polymer HandBook, 3 rd ed. Wiley Interscience, New York, 1989, pvii/5.
89. 中國科學技術大学高分子物理教研室,科學出版社,北京,1981.
90. 李斌才,高聚物的結構和物理性能,科學出版社,北京,267~268, 1989.
91. J. M. Yeh, C. J. Weng, K. Y. Huang, H. Y. Huang, Y. H. Yu, C. H.Yin, J. Appl. Polym. Sci. 94(5), 400-405 ,2004.
92. J. Ruokolainen, G. T. Brinke, O. Ikkala, Adv. Mater. 11(9) 777-780 ,1999.
93. O. Ikkala, G. T. Brinke, Chem. Commun. (19) 2131-2137, 2004.
94. Y. Tian, S. Liu, H. Ding, L. Wang, B. Liu, Y. Shi , Polymer. 48 2338-2344, 2007.
95. L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc. 109, 5649-5655 ,1987.
96. W. H. Hou, C. Y. Chen, C. C. Wang, Y. H. Huang, Electrochim. Acta. 48, 679-690 ,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔