跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳世育
研究生(外文):Shih-Yu Chen
論文名稱:以無機奈米二氧化矽製備壓克力/稀土元素複合物混成光電薄膜及其研究
論文名稱(外文):Poly(acrylic)/Rare Earth Elements Composites Hybrid Thin Film Derived From Nanosize Colloidal Silica
指導教授:吳永富吳永富引用關係游洋雁
指導教授(外文):Yung-Fu WuYang-Yen Yu
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:143
中文關鍵詞:奈米混成薄膜溶膠-凝膠法奈米二氧化矽稀土元素複合紫外光固化
外文關鍵詞:Nanosize hybrid thin filmSol-gelColloidal silicaRare earth elements compositesUV curing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
通常經由高溫燒結而成的粉末狀稀土複合物在嵌入有機或無機主體上時難以均勻分散,幸運的是帶有有機配體的稀土複合物對於有機溶劑有良好的溶解度。故本研究先使用自由基聚合法製備出單官能基壓克力前驅物,即(Poly(MMAMSMA))與多官能基壓克力前驅物(Poly(EDMA-TMPTA-MSMA)),之後再利用溶膠-凝膠法製備單官能基壓克力混成薄膜(PMMA)/SiO2/EuL3•2H2O及多官能基壓克力混成薄膜,即(PEDMA/PTMPTA)/ SiO2/EuL3•2H2O兩系列之混成薄膜。由SCMS、TEM及XPS結果顯示二氧化矽及EuL3•2H2O均能均勻分散於此混成薄膜中,並無明顯之聚集現象產生。由螢光光譜分析 (PL) 可以看到Eu3+獨特的放射波長,且因加入SiO2使得Eu複合物分散更為良好,進而減低濃度淬熄(Concentration Quenching)的效應,並且得到最大的螢光強度。由UV/vis及n&k結果顯示混成薄膜在可見光區有良好之透光性,且其折射率可由二氧化矽及EuL3•2H2O的比率有效的調控。由SEM及AFM的結果顯示多官能基壓克力/SiO2/EuL3•2H2O 的混成薄膜系列,有較佳的表面平垣度及較良好的成膜性。由TGA及DSC熱性質的分析中,可看出熱裂解溫度及玻璃轉移溫度會隨著二氧化矽含量的增加而升高,並且從殘餘量也可看出其熱穩定性的提升。最後亦採用UV光聚合法製備壓克力-二氧化矽混成薄膜,研究中也利用紅外線吸收光譜 (FTIR)與拉曼光譜來鑑定混成薄膜的結構。
Usually, powder-like rare-earth compounds are prepared through sintering at high temperature. However, it is difficult to incorporate rare-earth compounds into inorganic or organic matrices to achieve a uniform dispersion at the molecular level. Fortunately, rare-earth complexes with organic ligands have shown good solubility in common organic solvents. The study used radical polymerization to synthesize the precursor of single functional acrylate (Poly(MMAMSMA)) and poly-functional acrylate (Poly(EDMA-TMPTA-MSMA)). After the synthesis, sol-gel method was applied to prepare the hybrid thin film of (PMMA)/SiO2/EuL3•2H2O and (PEDMA/PTMPTA)/SiO2 /EuL3•2H2O. The results of SCMS, TEM, and XPS showed that both SiO2 and EuL3•2H2O were able to disperse in the hybrid thin film without aggregation. The PL spectra showed the unique emission of Eu3+. The addition of SiO2 made the compounds of Eu3+ disperse better and diminished the effect of concentration quenching and obtained the maximum fluorescence intensity. The UV/Vis spectra and n&k analysis showed that the hybrid thin film had good transparency in visible light, and the refractive index was effectively controlled by the different ratio of SiO2 to EuL3•2H2O. The results of SEM and AFM showed that the hybrid thin film which formed from the polyfunctional acrylic/SiO2/EuL3•2H2O had a flatter surface. The TGA and DSC analysis indicated that the temperature of pyrolysis and Tg increased by the contained volume of SiO2. In addition, the residue also showed an increase in the thermal stability. Finally, acrylic polymer/silica hybrid films were prepared by UV-curing. The reaction of each component in the hybrid films were investigated by FTIR and Raman spectroscopy in this study.
中文摘要..................................................v
英文摘要..................................................vi
表目錄....................................................ix
圖目錄....................................................x
第一章 緒論.................................................1
1-1前言....................................................1
1-2文獻回顧.................................................2
1-2-1 Sol-gel程序...........................................2
1-2-2以壓克力樹脂製備有機無機混成薄膜..........................5
1-2-3稀土複合物..............................................6
1-2-4以奈米二氧化矽製備有機無機混成薄膜.........................9
1-2-5以紫外光聚合法製備有機無機混成薄膜........................10
1-3研究目的.................................................14
第二章 實驗.................................................24
2-1藥品....................................................24
2-2實驗儀器.................................................25
2-3實驗測試項目.............................................29
2-3-1結構分析...............................................29
2-3-2螢光強度分析...........................................29
2-3-3熱性質分析.............................................30
2-3-4光學性質分析...........................................30
2-3-5表面型態分析...........................................30
2-3-6膜厚分析...............................................31
2-4實驗步驟.................................................31
2-4-1 稀土複合物之製備方法...................................31
2-4-2 懸浮態二氧化矽之製備方法................................32
2-4-3 懸浮態二氧化矽/MSMA前驅液之製備方法......................32
2-4-4 壓克力/二氧化矽:Eu complex混成薄膜之製備方法.............32
2-4-5 以紫外光聚合反應製備壓克力/奈米二氧化矽混成薄膜............32
第三章 奈米二氧化矽製備壓克力/二氧化矽:稀土複合物混成薄膜.........41
3-1固定稀土複合物含量製備壓克力/二氧化矽:Eu complex混成薄膜......41
3-1-1結構分析...............................................41
3-1-2 螢光及光學性質分析......................................41
3-1-3 熱性質分析.............................................42
3-1-4 微結構分析.............................................43
3-1-5 膜厚測試...............................................44
3-1-6 n&k分析...............................................44
3-2 固定二氧化矽含量製備壓克力/二氧化矽:Eu complex混成薄膜.......44
3-2-1 結構分析...............................................44
3-2-2 螢光放射強度與稀土複合物含量的影響........................45
3-2-3 熱性質分析.............................................46
3-2-4 微結構分析.............................................46
3-2-5 膜厚測試.............................................. 47
3-2-6 n&k分析................................................47
3-3 結論.....................................................48
3-3-1 以二氧化矽製備壓克力/稀土複合物混成薄膜....................48
3-3-2以稀土複合物製備壓克力/二氧化矽混成薄膜.....................48
3-4參考文獻...................................................49
第四章 UV光聚合法合成壓克力-二氧化矽混成薄膜.....................107
4-1結構分析..................................................107
4-2熱性質分析.................................................109
4-3光學性質分析...............................................109
4-4薄膜微結構分析.............................................110
4-5膜厚、硬度、n&k分析.........................................110
4-6結論......................................................111
4-7參考文獻...................................................111
附件.........................................................112
著作.........................................................112

表目錄
表1-1 壓克力、偶合劑與Colliodal Silica 混成光學薄膜製備方式........17
表1-2水銀燈的壓力與主要的紫外線...................................18
表1-3光的波長效果與對應光源......................................18
表1-4單體/寡聚合物官能基與性能之關連..............................19
表2-1 S0~S50、DT0~DT50混成薄膜組成配方(wt%)......................34
表2-2 S20Eu1~S20Eu7、DT20Eu1~DT20Eu7混成薄膜組成配方(wt%)........34
表2-3US0~US50、UDT0~UDT50混成薄膜組成配方(wt%)...................35
表3-1 EuL3•2H2O元素分析檢測分析表................................51
表3-2改變二氧化矽含量之混成材料性質檢測分析表.......................51
表3-3改變稀土複合物含量之混成材料性質檢測分析表.....................51
表4-1 紫外光固化混成薄膜特性分析表................................113
表4-2 紫外光固化混成薄膜29Si CP/MAS NMR光譜之Ti與Qi特性分析表......113
表4-3紫外光固化混成薄膜元素分析檢測分析表..........................113

圖目錄
圖1-1 Sol-Gel程序中水解反應機構圖..............................20
圖1-2 Sol-Gel程序中縮合反應機構圖..............................20
圖1-3 混成薄膜合成方法........................................21
圖1-4 稀土複合物激發放射示意圖..................................22
圖1-5 稀土複合物由配體向中心離子能量傳遞示意圖....................22
圖1-6 各種光源分光能量分布......................................23
圖2-1稀土複合物製備流程圖.......................................36
圖2-2 MSMA-SiO2溶液製備流程圖..................................36
圖2-3 壓克力/二氧化矽:Eu complex混成薄膜製備流程圖...............37
圖2-4 以紫外光聚合反應製備壓克力/二氧化矽混成薄膜流程圖...............38
圖2-5壓克力/二氧化矽:Eu complex混成薄膜化學示意圖...............39
圖2-6 以紫外光聚合反應製備壓克力/二氧化矽混成薄膜化學示意圖...............40
圖3-1 稀土複合物與配體之FTIR圖.............................................52
圖3-2 稀土複合物結構圖.............................................53
圖3-3 S10-S50混成薄膜之FTIR圖..............................54
圖3-4 DT10-DT50之FTIR圖.............................................55
圖3-5 S10-S50混成薄膜之UV光譜圖.............................................56
圖3-6 DT10-DT50混成薄膜之UV光譜圖..............................57
圖3-7 S10-S50混成薄膜之螢光光譜圖..............................58
圖3-8 DT10-DT50混成薄膜之螢光光譜圖..............................59
圖3-9 稀土複合物與配體之TGA圖.............................................60
圖3-10 S0-S50混成薄膜之TGA圖.............................................61
圖3-11 DT0-DT50混成薄膜之TGA圖..............................62
圖3-12 S0混成薄膜之SEM圖.............................................63
圖3-13 S10混成薄膜之SEM圖.............................................63
圖3-14 S20混成薄膜之SEM圖.............................................64
圖3-15 S30混成薄膜之SEM圖.............................................64
圖3-16 S40混成薄膜之SEM圖.............................................65
圖3-17 S50混成薄膜之SEM圖.............................................65
圖3-18 DT10混成薄膜之SEM圖.............................................66
圖3-19 DT20混成薄膜之SEM圖.............................................66
圖3-20 DT30混成薄膜之SEM圖.............................................67
圖3-21 DT40混成薄膜之SEM圖.............................................67
圖3-22 DT50混成薄膜之SEM圖.............................................68
圖3-23 S0混成薄膜之TEM圖.............................................69
圖3-24 S10混成薄膜之TEM圖.............................................69
圖3-25 S20混成薄膜之TEM圖.............................................70
圖3-26 S30混成薄膜之TEM圖.............................................70
圖3-27 S40混成薄膜之TEM圖.............................................71
圖3-28 S50混成薄膜之TEM圖.............................................71
圖3-29 DT10混成薄膜之TEM圖.............................................72
圖3-30 DT20混成薄膜之TEM圖.............................................72
圖3-31 DT30混成薄膜之TEM圖.............................................73
圖3-32 DT40混成薄膜之TEM圖.............................................73
圖3-33 DT50混成薄膜之TEM圖.............................................74
圖3-34 S0、S10-S50(b-f)混成薄膜之螢光顯微鏡圖.............................................75
圖3-35 S10-S40混成薄膜之AFM 2D圖(a)-(d)與3D圖(e)-(h).............................................76
圖3-36 S50、DT10-DT30混成薄膜之AFM 2D(a)-(d)與3D圖(e)-(h).............................................77
圖3-37 DT40-DT50混成薄膜之AFM 2D圖(a)-(b)與3D圖(c)-(d).............................................78
圖3-38 S10-S50混成薄膜之折射率與消光係數圖.............................................79
圖3-39 S20Eu1~S20Eu7混成薄膜之FT-IR光譜圖.............................................80
圖3-40 DT20Eu1~DT20Eu7混成薄膜之FT-IR光譜圖.............................................81
圖3-41 S20Eu1~S20Eu7混成薄膜之UV光譜圖.............................................82
圖3-42 DT20Eu1~DT20Eu7混成薄膜之UV光譜圖.............................................83
圖3-43 S0Eu1~S0Eu7混成溶液之PL光譜圖.............................................84
圖3-44 S20Eu1~S20Eu7混成溶液之PL光譜圖.............................................85
圖3-45 DT0Eu1~DT0Eu7混成溶液之PL光譜圖.............................................86
圖3-46 DT20Eu1~DT20Eu7混成溶液之PL光譜圖.............................................87
圖3-47 S20Eu1~S20Eu7混成薄膜之PL光譜圖.............................................88
圖3-48 DT20Eu1~DT20Eu7混成薄膜之PL光譜圖.............................................89
圖3-49 S20與DT20系列混成溶液之螢光強度分析圖.............................................90
圖3-50 S20Eu1~S20Eu7混成薄膜之TGA圖.............................................91
圖3-51 DT20Eu1~DT20Eu7混成薄膜之TGA圖.............................................92
圖3-52 S20Eu1~S20Eu7混成薄膜之DSC圖.............................................93
圖3-53 DT20Eu1~DT20Eu7混成薄膜之DSC圖.............................................94
圖3-54 S20Eu1混成薄膜之TEM圖.............................................95
圖3-55S20Eu3混成薄膜之TEM圖.............................................95
圖3-56 S20Eu5混成薄膜之TEM圖.............................................96
圖3-57S20Eu7混成薄膜之TEM圖.............................................96
圖3-58 DT20Eu1混成薄膜之TEM圖.............................................97
圖3-59 DT20Eu3混成薄膜之TEM圖.............................................97
圖3-60 DT20Eu5混成薄膜之TEM圖.............................................98
圖3-61 DT20Eu7混成薄膜之TEM圖.............................................98
圖3-62 S20Eu1混成薄膜之FESEM圖.............................................99
圖3-63 S20Eu3混成薄膜之FESEM圖.............................................99
圖3-64 S20Eu5混成薄膜之FESEM圖.............................................100
圖3-65 S20Eu7混成薄膜之FESEM圖.............................................100
圖3-66 DT20Eu1混成薄膜之FESEM圖.............................................101
圖3-67 DT20Eu3混成薄膜之FESEM圖.............................................101
圖3-68 DT20Eu5混成薄膜之FESEM圖.............................................102
圖3-69 DT20Eu7混成薄膜之FESEM圖.............................................102
圖3-70 S20Eu1-S20Eu7混成薄膜之AFM 2D圖(a)-(d)與3D圖(e)-(h).............................................103
圖3-71 DT20Eu1-DT20Eu7混成薄膜之AFM 2D圖(a)-(d)與3D圖(e)-(h).............................................104
圖3-72 S20Eu0~S20Eu7混成薄膜之折射率圖形.............................................105
圖3-73 DT20Eu0~DT20Eu7混成薄膜之折射率圖形.............................................106
圖4-1 US10-US50混成薄膜之FTIR圖.............................................114
圖4-2 US10之FTIR圖(UV曝光時間不同) .............................................115
圖4-3 US10之FTIR圖(不同固化溫度).............................................116
圖4-4 UDT10-UDT50之FTIR光譜圖.............................................117
圖4-5 UDT20之FTIR圖(不同曝光時間).............................................118
圖4-6 UDT10之FTIR圖(不同固化溫度).............................................119
圖4-7 US10-US50之拉曼光譜圖(曝光前).............................................120
圖4-8 US10-US50之拉曼光譜圖(曝光後).............................................121
圖4-9 UDT10-UDT50之拉曼光譜圖(曝光前).............................................122
圖4-10 UDT10-UDT50之拉曼光譜圖(曝光後).............................................123
圖4-12 US0-US50之TGA圖.............................................125
圖4-13 UDT0-UDT50之TGA圖.............................................126
圖4-14 US10-US50之DSC圖.............................................127
圖4-15 UDT10-UDT50之DSC圖.............................................128
圖4-16 US10-US50之紫外光/可見光光譜圖.............................................129
圖4-17 UDT10-UDT50之紫外光/可見光光譜圖.............................................130
圖4-18 DAROCURE 1173光起始劑之紫外光/可見光光譜圖.............................................131
圖4-19 US10混成薄膜之FESEM圖.............................................132
圖4-20 US20混成薄膜之FESEM圖.............................................132
圖4-21 US30混成薄膜之FESEM圖.............................................133
圖4-22 US40混成薄膜之FESEM圖.............................................133
圖4-23 US50混成薄膜之FESEM圖.............................................134
圖4-24 UDT10混成薄膜之FESEM圖.............................................134
圖4-25 UDT20混成薄膜之FESEM圖.............................................135
圖4-26 UDT30混成薄膜之FESEM圖.............................................135
圖4-27 UDT40混成薄膜之FESEM圖.............................................136
圖4-28 UDT50混成薄膜之FESEM圖.............................................136
圖4-29 US10-US40混成薄膜之AFM 2D圖(a)-(d)與3D圖(e)-(h).............................................137
圖4-30 US50、UDT10-UDT30混成薄膜之AFM 2D圖(a)-(d)與3D圖(e)-(h).............................................138
圖4-31 UDT40-UDT50混成薄膜之AFM 2D圖(a)-(b)與3D圖(c)-(d).............................................139
圖4-32 US10之TEM圖.............................................140
圖4-33 US50之TEM圖.............................................140
圖4-34 UDT10之TEM圖.............................................141
圖4-35 UDT50之TEM圖.............................................141
圖4-36 S0-US50混成薄膜之折射率與消光係數圖.............................................142
圖4-37 DT0-UDT50混成薄膜之折射率與消光係數圖.............................................143
1.LARRY L. HENCH' and JON K. WEST, “The Sol-Gel Process”Chem. Rev., 90. 33-72 (1990)
2.B. Jirensons et. al., Colloid chemistry, New York Co. (1962)
3.H. Dislich, "Preparation of Multicomponent Glasses without Fluid Melts", Glastechn. Ber., 44, 1-8 (1971)
4.G.L. Wilkes, B. Orler, H. Huang, "Ceramers: Hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol-gel process",Polym. Bull. (Berlin), 14, 557 (1985)
5.M.W. Ellsworth, B.M. Novak, "Mutually Interpenetrating Inorganic-Organic Networks. New Routes into Nonshrinking Sol-Gel Composite Materials", J. Am. Chem. Soc., 113, 2756-2758 (1991)
6.John D., Nuci A.J.M., “Sol-gel Material Chemistry and Applications”, 15-21, CRC (2002)
7.C.J.T. Landry, B.K. Coltrain, and B.K. Brady,"In situ polymerization of tetraethoxysilane in poly(methyl methacrylate): morphology and dynamic mechanical properties", Polymer, 33 1486-1495(1992)
8.C.J.T. Landry, B.K. Coltrain, J.M. O’Reilly, “Role of Trialkoxysilane Functionalization in the preparation of Organic-Inorganic Composites”, Chem. Mater., 5, 1445-1455 (1993)
9.K.Y. Qiu, Z.H. Huang, “The effects of interactions on the properties of acrylic polymer/silica hybrid materials prepared by the in situ sol-gel process”, polymer, 38 521-526 (1997)
10.I.M. Chu, S.C. Ni, C.K. Chan, S.L. Peng, “Effects of heat treatment on the properties of poly(methyl methacrylate)/silica hybrid materials prepared by sol-gel process”, polymer, 42 4189-4196 (2001)
11.L. R. Melby, N. J. Rose, E. Abramson, J. C. Caris, “Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes”,J. Am. Chem. Soc., 86, 5117-5125 (1964)
12.李媛媛、關濤、王冬梅、杜斌、魏琴, “稀土配合物的發光原理與其應用”, 濟南大學學報(自然科學版), 第19卷第2期, 113-119 (2005)
13.喬一方、潘湛昌、彭康華, “稀土配位及稀土配合物在發光領域的應用”, 廣東化工, 第34卷第2期, 10-12 (2006)
14.楊素華, “螢光粉在發光上的應用”, 科學發展月刊, 358期, p.66-71 (2002)
15.謝嘉民、賴一凡、林永昌、枋志堯, “光激發螢光量測的原理、架構及應用”, 奈米通訊, 十二卷第二期, p.28-39 (2005)
16.B. Yan, H.J. Zhang, S.B. Wang, J.Z. Ni, “Luminescence properties of rare earth (Eu3+ and Tb3+) complexes with conjugated carboxylic acids and 1,10-phenanthroline incorporated in silica matrix”, J. Photochem. Photobiol. A-Chem., 112, 231-238 (1998)
17.Y. H.Li, H. J. Zhang, S. B. Wang, Q. G. Meng, H. R. Li, X. H. Chuai, “Synthesis and luminescence properties of organic inorganic hybrid thin films doped with Eu(III)”, Thin Solid Films 385, 205-208 (2001)
18.L.J. Bian, X.F. Qian, J. Yin, Z.K Zhu, Q.H. Lu, “Preparation and luminescence properties of the PMMA/SiO2/EuL3•2H2O hybrids by a sol-gel method”, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 100, 53-58 (2003)
19.T. Sasaki, H. Xin, Y. Ebina, R. Ma, K. Takada, “Thermally stable Luminescent composites by confining rare earth complexes in the two-dimensional gallery of titania nanosheets and their photophysical properties”, J. Phys. Chem. B, 110 9863-9868 (2006)
20.C.J. Brinker, G.W. Scherer, “Sol-gel science:The physics and chemistry of sol-gel processing”, Academic Press., Boston (1992)
21.W.T. Ford, H.B. Sukara, J.M. Jethmalani, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate)”, Chem. Mater., 6, 362-364 (1994)
22.W.T. Ford, J.M. Jethmalani, “Diffraction of Visible Light by Ordered Monodisperse Silica-Poly(methyl acrylate) Composite Films”, Chem. Mater., 8, 2138-2146 (1996)
23.W.C. Chen, S.J. Lee, “Synthesis and Characterization of Poly(methyl methacrylate)-Silica Hybrid Optical Thin Films”, polymer Journal, 32, 67-72 (2000)
24.Y.Y. Yu, C.Y. Chen and W.C. Chen, “Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica” , Polymer 44, 593–601 (2003)
25.Steven G., Wentink B.S, Stanley D. koch, “UV curing in screen printing for printed circuits and the graphic arts”, Technology marketing corporation, 5-45, Indiana (1981)
26.Charles E. Hoyle, James F. Kinstle, “Radiation curing of Polymeric Materials”, Division of polymeric materials: Science and Engineering, 1-17,Fisher Scientific Company (1989)
27.永松元太郎著, 劉瑞祥編譯, “感光性高分子的機能和分類”, 感光性高分子, 77-85 (1987), 台南市:復文書局
28.劉建良, “UV curing發展簡介與應用”, 化工科技與商情, 第41期, 1-4 (2003)
29.M.E.L. Wouters, D.P. Wolfs, M.C. van der Linde, J.H.P.Hovens, A.H.A. Tinnemans, “Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method”, Prog. Org. Coat., 51 312-319 (2004)
30.D. K. Chattopadhyay, Siva Sankar Panda, K. V. S. N. Raju, “Thermal and mechanical properties of epoxy acrylate/methacrylates UV Cured coatings”, Prog. Org. Coat., 54, 10-19 (2005)
31.李隆華, “聚合物-二氧化鈦混成材料與其光學薄膜之製備與鑑定”, 台灣大學化學工程研究所, 碩士論文 (2001)
32.詹勳昌, “UV光聚合法製備壓克力-二氧化矽混成薄膜及其特性研究”, 台灣大學化學工程研究所, 碩士論文 (2001)
33.翁暢健, “壓克力/二氧化鈦複合材料的製備與性質研究”, 中原大學化學研究所, 碩士論文 (2002)
34.曾士恭, “紫外光可硬化型聚胺酯壓克力樹脂之研究”, 台灣大學化學工程研究所, 碩士論文 (2004)
35.詹佳樺, “溶膠凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”, 中央大學化學工程研究所, 碩士論文 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top