跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾德耀
研究生(外文):Te-Yao Chung
論文名稱:PVP和鹽類兩水相之液液相平衡研究
論文名稱(外文):Study of liquid-liquid equilibria of aqueous two-phase systems containing polyvinylpyrrolidone and salt
指導教授:吳喬松蔡榮進
指導教授(外文):Chyau-Song WuJung-Chin Tasi
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:138
中文關鍵詞:兩水相系統PVP
外文關鍵詞:polyvinylprrolidone (PVP)aqueous two-phase systems
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本文探討的是利用PVP-無機鹽兩水相(aqueous two-phase system)系統,而實驗溫度操作在278.15、298.15及308.15K下之液液相平衡量測。並選擇PVP分子量10000、8000、3500此三分子量探討,無機鹽類部份就分別討論陰陽離子對兩水相圖影響,因此陽離子部分選擇MgSO4及Na2SO4,陰離子則選擇K3PO4及K2HPO4,陰離子部份可以發現兩水相面積PO43->HPO42-,陽離子兩水相面積則Na+>Mg2+,就溫度的探討發現溫度越高則兩相區形成面積越大。由實驗結果可以清楚發現兩水相相圖會因為溫度、分子量大小及所選擇鹽類不同,而形成兩水相的範圍則有所不同。
Abstract
Liquid-liquid equilibrium(LLE) data for the polyvinylpyrrolidone (PVP)-Salt aqueous two-phase systems have been obtained experimentally at T=(278.15, 298.15, 308.15)K. Polyvinylpyrrolidone was used with average molecular weight of 10000, 8000,and 3500.The effect of cations and anions on phase diagram of aqueous two-phase system is studied. The cations used are magnesium Sulfate anhydrous(MgSO4) and sodium sulfate anhydrous(Na2SO4). The anions used are potassium phosphate tribasic(K3PO4) and di-potassium hydrogénophosphate(K2HPO4). The phase diagram of aqueous two-phase with respected to the anion PO43->HPO42-. The phase diagram of aqueous two-phase with respected to the cation Na+>Mg2+. The two-phase area was expanded with increasing of temperature. The result show that the effect of two-phase region are temperature、molecular masses and kinds of salt.
目錄
中文摘要Ⅰ
AbstractⅡ
目錄Ⅲ
表目錄
圖目錄Ⅶ
第一章 序論1
1-1簡介1
1-2兩水相系統介紹2
1-3 兩水相系統的分類3
1-3-1 高分子-高分子兩水相系統3
1-3-2 高分子-鹽類兩水相系統4
1-4 兩水相之相圖解釋4
1-5 兩水相之特性與其價值5
1-6 兩水相未來發展遠景及應用6
1-7研究動機7
第二章 文獻回顧8
2-1影響兩水相組成之影響8
2-1-1鹽類添加的影響8
2-1-2高分子分子量的影響9
2-1-3溫度9
2-1-4相組成的影響10
2-2高分子-鹽類回收方法11
2-3分子間作用力在ATPS的應用11
2-3-1離子作用力11
2-3-2疏水性作用力.12
2-3-3親和性分離12
2-4 PVP應用及特性介紹13
第三章 兩水相萃取實驗量測14
3-1實驗儀器15
3-2 藥品15
3-3儀器介紹15
3-3-1 折射儀(Refractometer KEM RA-500N)16
3-3-2 密度計(Anton Paar DMA 4100)16
3-3-3 原子吸收光譜(VARIAN Specter AA)16
3-3-3-1 譜線干擾17
3-3-3-2 背景干擾17
3-3-3-3 化學干擾17
3-3-3-4 電離干擾18
3-3-3-5 物理干擾18
3-4 兩水相滴定曲線18
3-5 濃度與折射率檢量線之製作18
3-5-1 檢量線之數學模式18
3-5-2 檢量線實驗步驟19
3-6兩水相藥品配置19
3-7兩相區tie-line之實驗步驟19
3-8實驗量測結果的計算20
3-8-1鹽類濃度的計算20
3-8-2 PVP濃度的計算21
第四章 結果與討論22
4-1 折射率與濃度數據探討22
4-2 平衡曲線討論22
4-3 溫度影響23
4-4 陽離子影響24
4-5 陰離子影響24
4-6 不同分子量影響25
第五章 結論27
參考文獻132
表目錄
表1-1 常見蛋白質分離技術簡介 28
表1-2 常見之兩水相系統 29
表1-3 PVP分子量10000文獻之系統 30
表4-1 PVP(1)+K2HPO4(2)+H2O(3)在298.15K下折射率與濃度數據 31
表4-2 PVP(1)+Na2SO4(2) +H2O(3) 在298.15K下折射率與濃度數據 32
表4-3 PVP(1)+MgSO4(2) +H2O(3) 在298.15K下折射率與濃度數據 33
表4-4 K3PO4(1)+PVP10000(2)+H2O(3) 兩水相系統之平衡數據 34
表4-5 K3PO4(1)+PVP8000(2)+H2O(3) 兩水相系統之平衡數據 35
表4-6 K3PO4(1)+PVP3500(2)+H2O(3) 兩水相系統之平衡數據 36
表4-7 K2HPO4(1)+PVP10000(2)+H2O(3) 兩水相系統之平衡數據 37
表4-8 K2HPO4(1)+PVP8000(2)+H2O(3) 兩水相系統之平衡數據 38
表4-9 K2HPO4(1)+PVP3500(2)+H2O(3) 兩水相系統之平衡數據 39
表4-10 Na2SO4(1)+PVP10000(2)+H2O(3) 兩水相系統之平衡數據 40
表4-11 Na2SO4(1)+PVP8000(2)+H2O(3) 兩水相系統之平衡數據 41
表4-12 Na2SO4(1)+PVP3500(2)+H2O(3) 兩水相系統之平衡數據 42
表4-13 MgSO4(1)+PVP10000(2)+H2O(3)兩水相系統之平衡數據 43
表4-14 MgSO4(1)+PVP8000(2)+H2O(3) 兩水相系統之平衡數據 44
表4-15 MgSO4(1)+PVP3500(2)+H2O(3) 兩水相系統之平衡數據 45
表4-16 在不同溫度K3PO4(1)+PVP10000(2)+H2O(3)兩水相系統滴定數據 46
表4-17 在不同溫度K3PO4(1)+PVP8000(2)+H2O(3) 兩水相系統滴定數據 47
表4-18 在不同溫度K3PO4(1)+PVP3500(2)+H2O(3) 兩水相系統滴定數據 48
表4-19 在不同溫度K2HPO4(1)+PVP10000(2)+H2O(3) 兩水相系統滴定數據 49
表4-20 在不同溫度K2HPO4(1)+PVP8000(2)+H2O(3) 兩水相系統滴定數據 50
表4-21 在不同溫度K2HPO4(1)+PVP3500(2)+H2O(3) 兩水相系統滴定數據 51
表4-22 在不同溫度Na2SO4(1)+PVP10000(2)+H2O(3) 兩水相系統滴定數據 52
表4-23 在不同溫度Na2SO4 (1)+PVP8000(2)+H2O(3) 兩水相系統滴定數據 53
表4-24 在不同溫度Na2SO4 (1)+PVP3500(2)+H2O(3) 兩水相系統滴定數據 54
表4-25 在不同溫度MgSO4(1)+PVP10000(2)+H2O(3) 兩水相系統滴定數據 55
表4-26 在不同溫度MgSO4(1)+PVP8000(2)+H2O(3) 兩水相系統滴定數據 56
表4-27 在不同溫度MgSO4¬(1)+PVP3500(2)+H2O(3) 兩水相系統滴定數據 57
圖目錄
圖1-1 兩水相圖形 59
圖2-1 不同鹽類陽離子對兩水相圖形影響(Zafarani-Moattar and Sadeghi 2001) 60
圖2-2 不同陰離子對兩水相圖形影響(Zafarani-Moattar and Gasemi 2002) 61
圖2-3 溫度25℃和pH值為9,PEG+磷酸鉀+尿素系統,(■) PEG 1450; (O) PEG 3350;(▲) PEG 8000. (Giuliano 1992) 62
圖2-4 溫度25℃,PEG–NaH2PO4–H2O系統分子量對兩水相影響(Zafarani-Moattar and Gasemi 2002) 63
圖2-5 PEG-NH4H2PO4-H2O系統溫度對兩水相圖形之影響(Zafarani-Moattar and Sadeghi 2002) 64
圖2-6 溫度對蛋白質分配係數之影響(Simon et al. 2006) 65
圖2-7 PVP聚乙烯吡咯烷酮的結構式 66
圖3-1 樣品原子化過程 67
圖 4-1 PVP10000+K3PO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 68
圖 4-2 PVP8000+K3PO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 69
圖 4-3 PVP3500+K3PO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 70
圖 4-4 PVP10000+K2HPO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 71
圖 4-5 PVP8000+K2HPO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 72
圖 4-6 PVP3500+K2HPO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 73
圖 4-7 PVP10000+Na2SO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 74
圖 4-8 PVP8000+Na2SO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 75
圖4-9 PVP3500+Na2SO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 76
圖 4-10 PVP10000+MgSO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 77
圖 4-11 PVP8000+MgSO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 78
圖 4-12 PVP3500+MgSO4+H2O在298.15K折射率與濃度圖形,方程式常數的結果與R-squared 79
圖 4-13 PVP10000+K3PO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 80
圖 4-14 PVP10000+K3PO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 81
圖 4-15 PVP10000+K3PO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 82
圖 4-16 PVP8000+K3PO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 83
圖 4-17 PVP8000+K3PO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 84
圖 4-18 PVP8000+K3PO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 85
圖 4-19 PVP3500+K3PO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 86
圖 4-20 PVP3500+K3PO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 87
圖 4-21 PVP3500+K3PO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 88
圖 4-22 PVP10000+K2HPO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 89
圖 4-23 PVP10000+K2HPO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 90
圖 4-24 PVP10000+K2HPO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 91
圖 4-25 PVP8000+K2HPO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 92
圖 4-26 PVP8000+K2HPO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 93
圖 4-27 PVP8000+K2HPO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 94
圖 4-28 PVP3500+K2HPO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 95
圖 4-29 PVP3500+K2HPO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 96
圖 4-30 PVP3500+K2HPO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 97
圖 4-31 PVP10000+Na2SO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 98
圖 4-32 PVP10000+Na2SO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 99
圖 4-33 PVP10000+Na2SO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 100
圖 4-34 PVP8000+Na2SO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 101
圖 4-35 PVP8000+Na2SO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 102
圖 4-36 PVP8000+Na2SO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 103
圖 4-37 PVP3500+Na2SO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 104
圖 4-38 PVP3500+Na2SO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 105
圖 4-39 PVP3500+Na2SO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 106
圖 4-40 PVP10000+MgSO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 107
圖 4-41 PVP10000+MgSO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 108
圖 4-42 PVP10000+MgSO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 109
圖 4-43 PVP8000+MgSO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 110
圖 4-44 PVP8000+MgSO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 111
圖 4-45 PVP8000+MgSO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 112
圖 4-46 PVP3500+MgSO4+H2O在278.15K下兩水相系統平衡曲線及滴定點 113
圖 4-47 PVP3500+MgSO4+H2O在298.15K下兩水相系統平衡曲線及滴定點 114
圖 4-48 PVP3500+MgSO4+H2O在308.15K下兩水相系統平衡曲線及滴定點 115
圖 4-49 PVP3500+K3PO4+H2O溫度298.15K及308.15K,Zafarani-Moatter et al.及in this work比較圖形 116
圖 4-50 PVP3500+K2HPO4+H2O溫度298.15K及308.15K,Zafarani-Moatter et al.及in this work比較圖形 117
圖 4-51 PVP10000+ K3PO4+ H2O在278.15K、298.15K及308.15K滴定曲線比較 118
圖 4-52 PVP10000+ K2HPO4+ H2O在278.15K、298.15K及308.15K滴定曲線比較 119
圖 4-53 PVP8000+ Na2SO4+ H2O在278.15K、298.15K及308.15K滴定曲線比較 120
圖 4-54 PVP3500+ MgSO4+ H2O在278.15K、298.15K及308.15K滴定曲線比較 121
圖 4-55 PVP10000+Salt+H2O在278.15K陽離子影響之圖形 122
圖 4-56 PVP8000+Salt+H2O在278.15K陽離子影響之圖形 123
圖 4-57 PVP3500+Salt+H2O在278.15K陽離子影響之圖形 124
圖 4-58 PVP10000+Salt+H2O在278.15K陰離子影響之圖形 125
圖 4-59 PVP8000+Salt+H2O在278.15K陰離子影響之圖形 126
圖 4-60 PVP3500+Salt+H2O在278.15K陰離子影響之圖形 127
圖 4-61 Polymer+ K3PO4+ H2O在298.15K下高分子分子量影響圖形 128
圖 4-62 Polymer+ K2HPO4+ H2O在298.15K下高分子分子量影響圖形 129
圖 4-63 Polymer+ Na3SO4+ H2O在298.15K下高分子分子量影響圖形 130
圖 4-64 Polymer+ MgSO4+ H2O在298.15K下高分子分子量影響圖形 131
參考文獻
Albertsson, P.A., Partition of Cell Particles and Macromolecules Wiley-Interscience, New York, (1986).
Beijerinck, M.W., Beobachtungen und Betrachtungen über Wurzelknospen und Nebenwurzeln, Amsterdam, J. Müller, (1896)
Blázquez, G., Camacho, F., González-Tello, P. and Alarcón, F.J., Partition coefficients of α-amylase in aqueous two-phase systems PEG+MgSO4•7H2O+H2O at 298K, Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1379, 191, (1998)
Alred, P.A., Tjerneld, F., Kozlowski, A., and Harris, J.M., Aqueous polymer two-phase systems in biotechnology, Bioseparation, Vol. 29, 365, (1992).
Baskir, J.N., Hatton, T.A., and Sulter, U.W., Protein partitioning in two-phase aqueous polymer systems, Biotechnology and bioengineering, Vol. 34, 541, (1989).
Belval, S.D., Breton, B.L., Huddleston, J., and Lyddiatt, A., Influence of temperature upon protein partitioning in poly(ethylene glycol)–salt aqueous two-phase systems close to the critical point with some observations relevant to the partitioning of particles, Journal of Chromatography. B, Biomedical Applications, Vol. 711, 19, (1998).
Berthod, A., Ruiz-Angel, M.J., Pino, V., and Carda-Broch, S., Solvent systems for countercurrent chromatography: An aqueous two phase liquid system based on a room temperature ionic liquid, Journal of Chromatography A, Vol. 1151, 65, (2007).
Brooks, D.E., Sharp, K.A., and Fisher, D., In: Partitioning in Aqueous Two-Phase Systems: Theory、Methods、Uses and Applications to Biotechnology, Academic Press, New York, (1985).
Deirdre, O.C., Anne, M.H., and Owen I.C., The effect of spray drying solutions of polyethylene glycol (PEG) and lactose/PEG on their physicochemical properties, International Journal of Pharmaceutics, Vol. 235, 193, (2002).
Eiteman, M.A., Temperature-dependent phase inversion and its effect on partitioning in the poly(ethylene glycol)-ammonium sulfate aqueous two-phase system, Journal of Chromatography A, Vol. 668, 13, (1994).
Fernandes, S., Kim, H.S., and Hatti-Kaul1, R., Affinity Extraction of Dye- and Metal Ion-Binding Proteins in Polyvinylpyrrolidone-Based Aqueous Two-Phase System, Protein Expression and Purification, Vol. 24, 460, (2002).
Fernandes, P., Wendhausen, R., Frigato, M., Carvalho, C.C.C.R., Cruz, A., Pinheiro, H.M., and Cabral, J.M.S., Chrysotile as a support for the immobilisation of Mycobacterium sp. NRRL B-3805 cells for the bioconversion of β-sitosterol in an organic–aqueous two-liquid phase system, Journal of Molecular Catalysis B: Enzymatic, Vol. 32, 61, (2005)
Filho, P.D.A.P., Dallora, N.L.P., and Klemz, J., Partitioning of model proteins in aqueous two-phase systems containing polyethylene glycol and ammonium carbamate, Biochemical Engineering Journal, Vol. 34, 92, (2007).
Flory, P.J., Principles of Polymer Chemistry, Cornell University Press, NY, (1953).
Forciniti, D., Hall, C.K., and Kula, M.R., Analysis of polymer molecular weight distributions in aqueous two-phase systems, Journal of Biotechnology, Vol. 20, 151, (1991).
Gaube, J., Pfennig, A. and Stumpf, M., Thermodynamics of aqueous poly(ethylene glycol)-dextran two-phase systems using the consistent osmotic virial equation, Fluid Phase Equilibria, Vol. 83, 365, (1993).
Giuliano, K.A., Aqueous two-phase protein partitioning using textile dyes as affinity ligands, Analytical Biochemistry, Vol. 197, 333, (1992).
Glatz, C.E., and Zhengrong, G., Aqueous two-phase extraction for protein recovery from corn extracts, Journal of Chromatography B, Vol. 845, 38, (2007).
Guan, Y.H., Smulders, J., and Fisher, D., Spiral coils for counter-current chromatography using aqueous polymer two-phase systems, Journal of Chromatography A, Vol. 1151, 115, (2007).
Harris, J.M., Poly( Ethylene Glycol ) Chemistry : biotechnical and biomedical applications, Plenum Press, New York, (1992).
Han, J.H. and Lee, C.H., Determining isoelectric points of model proteins and Bacillus subtilis neutral protease by the cross partitioning using poly(ethylene glycol)/Dextran aqueous two-phase systems, Colloids and Surfaces B: Biointerfaces, Vol. 9, 131, (1997).
Ishiduki, K., and Esumi, K., Adsorption Characteristics of Poly(acrylic acid) and Poly(vinyl pyrrolidone) on Alumina from Their Mixtures in Aqueous Solution, Vol. 185, 274, (1997).
Johansson, G., Walter, H., Brooks, D.E., and Fisher, D., Partitioning in Aqueous Two Phase Systems, Academic Press, (1986).
Jonathan, H., Andres, A., Kristina, K., Julia, F., Enfors, S.O., and Andrew, L., The molecular basis of partitioning in aqueous two-phase systems, Trends in Biotechnology, Vol. 9, 381, (1991).
Karimzadeh, R., Mokhtarani, B., Amini, M.H. and Manesh, S.D., Partitioning of Ciprofloxacin in Aqueous Two Phase System of Poly (ethyleneglycol) and Sodium Sulphate, Biochemical Engineering Journal, (2007).(備註: In Press, Accepted Manuscript, Available online 20 July 2007)
Kulkarni, N., Vaydya, A., and Rao, M., Extractive Cultivation of RecombinantEscherichia coliUsing Aqueous Two Phase Systems for Production and Separation of Extracellular Xylanase, Biochemical and Biophysical Research Communications, Vol. 255, 274, (1999).
Liu, F., Li, K., Chen, Z., Li, S., He, C., and Gao, F., Li, D., Extraction and determination of morphine in compound liquorice using an aqueous two-phase system of poly(ethylene glycol)/K2HPO4 coupled with HPLC, Talanta, Vol. 71, 784, (2007).
Liakopoulou-Kyriakides, M., and Karakatsanis, A., Comparison of PEG/fractionated dextran and PEG/industrial grade dextran aqueous two-phase systems for the enzymic hydrolysis of starch, Journal of Food Engineering, Vol. 80, 1213, (2007).
Merchuk, J.C., Andrews, B.A., and Asenjo, J.A., Aqueous two-phase systems for protein separation: Studies on phase inversion, Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 711, 191, (1998).
Mishima, K., Nakatani, K., Nomiyama, T., Matsuyama, K., Nagatani, M. and Nishikawa, H., Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol and dipotassium hydrogenphosphate, Fluid Phase Equilibria, Vol. 107, 269, (1995).
Mishima, K., Matsuyama, K., Ezawa, M., Takarabe, S., and Nagatani, M., Interfacial tension of aqueous two-phase systems containing poly(ethylene glycol) and dipotassium hydrogenphosphate, Journal of Chromatography B, Vol. 711, 313, (1998).
Negrete A., Ling, T.C., and Lyddiatt A., Aqueous two-phase recovery of bio-nanoparticles: A miniaturization study for the recovery of bacteriophage T4, Journal of Chromatography B, Vol. 854, 13, (2007).
Nair, B.U., Saravanan, S., Rao, J.R., Murugesan, T. and Ramasami, T., Partition of tannery wastewater proteins in aqueous two-phase poly (ethylene glycol)-magnesium sulfate systems: Effects of molecular weights and pH, Chemical Engineering Science, Vol. 62, 969, (2007)
Nerli, B., Farruggia B., Romanini, D., and Picó G., Polyethyleneglycol molecular mass and polydispersivity effect on protein partitioning in aqueous two-phase systems, Journal of Chromatography B, Vol. 830, 286, (2006).
Osseo-Asare, K., and Zeng, X., Partition of pyrite in aqueous biphase systems, International Journal of Mineral Processing, Vol. 58, 319, (2000).
Pessoa, Jr.A., Porto, A.L.F., Lima-Filho, J.L., Neto c, B.D.B., Porto, T.S., and Cavalcanti, M.T.H., Aqueous two-phase systems extraction of α-toxin from Clostridium perfringens type A, Journal of Chromatography B, Vol. 833, 135, (2006).
Picó, G., Nerli, B., Farruggia, B., Rigatuso, R., and Bertoluzzo, M.G., Cosolutes effects on aqueous two-phase systems equilibrium formation studied by physical approaches, Colloid and Surfaces B: Biointerfaces, (2007).
Picó, G., Tubío, G., and Nerli, B., Partitioning features of bovine trypsin and α-chymotrypsin in polyethyleneglycol-sodium citrate aqueous two-phase systems, Journal of Chromatography B, Vol. 852, 244, (2007).
Raghav Rao, K.S.M.S., SzIag, D.S., Sikdar, S.K., Joshi, J.B. and Sawant, S.B., Protein extraction in a spray column using a polyethylene glycol-maltodextrin two-phase polymer system, The Chemical Engineering Journal, Vol. 46, 875, (1991).
Raghavarao, K.S.M.S., and Patil, G., Aqueous two phase extraction for purification of C-phycocyanin, Biochemical Engineering Journal, Vol. 34, 156, (2007).
Rogers, R.D., and Zhang, J., Effects of increasing polymer hydrophobicity on distribution ratios of TcO4− in polyethylene/poly(propylene glycol)-based aqueous biphasic systems, Journal of Chromatography B, Vol. 680 ,231, (1996).
Sadeghi, R., Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate at different temperatures—Experimental results and modeling of liquid–liquid equilibrium data, Fluid Phase Equilibria, Vol. 246, 89, (2006).
Salabat, A., Prediction of liquid–liquid phase diagrams of aqueous salt+PEG systems using a thermodynamic model, Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 30, 296, (2006).
Simon, L., and Gautam, S., Partitioning of β-glucosidase from Trichoderma reesei in poly(ethylene glycol) and potassium phosphate aqueous two-phase systems: Influence of pH and temperature, Biochemical Engineering Journal, Vol. 30, 104, (2006)
Snyder, S.M., Cole, K.D., and Sziag, D.C., Phase Compositions, Viscosities, and Densities for Aqueous Two-Phase Systems Composed of Polyethylene Glycol and Various Salts at 25 ºC, Journal of Chemical and Engineering Data, Vol. 37, 266, (1992).
Tjerneld, F., Berner, S., Cajarville, A., and Johansson, G., New aqueous two-phase system based on hydroxypropyl starch useful in enzyme purification, Enzyme and Microbial Technology, Vol. 8, 417, (1986).
Vincentelli, J., Paul, C., Azarkan, M., Guermant, C., and Moussaoui, A. E. and Looze, Y., Evaluation of the polyethylene glycol–KF–water system in the context of purifying PEG–protein adducts, International Journal of Pharmaceutics,Vol. 176, 241, (1999).
Walter, H., and Johansson, G., Partitioning in aqueous two-phase systems: An overview, Analytical Biochemistry, Vol. 155, 215, (1986).
Wu, Y.T., and Zhu, Z.Q., Modeling of liquid–liquid equilibrium of polyethylene glycol-salt aqueous two-phase systems-the effect of partial dissociation of the salt, Fluid Phase Equilibria, Vol. 154, 109, (1999).
Zafarani-Moattar, M.T., and Sadeghi, R., Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium dihydrogen phosphate or disodium hydrogen phosphate: Experiment and correlation, Fluid Phase Equilibria, Vol. 181, 95, (2001).
Zafarani-Moattar, M.T., and Gasemi, J., Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and ammonium dihydrogen phosphate or diammonium hydrogen phosphate:Experiment and correlation, Fluid Phase Equilibria, Vol. 198, 281, (2002).
Zafarani-Moattar, M.T., and Sadeghi, R., Measurement and correlation of liquid–liquid equilibria of the aqueous two-phase system polyvinylpyrrolidone–sodium dihydrogen phosphate, Fluid Phase Equilibria, Vol. 203, 177, (2002).
Zafarani-Moattar, M.T., and Sadeghi, R., Effect of temperature on the phase equilibrium of aqueous two-phase systems containing polyvinylpyrrolidone and disodium hydrogen phosphate or trisodium phosphate, Fluid Phase Equilibria, Vol. 238 , 129, (2005).
Zafarani-Moattar, M.T., and Seifi-Aghjekohal, P., Liquid–liquid equilibria of aqueous two-phase systems containing polyvinylpyrrolidone and tripotassium phosphate or dipotassium hydrogen phosphate: Experiment and correlation, Computer Coupling of Phase Diagrams and Thermochemistry, (2007).
Zhang, Z., Zhao, B., and Hu, L., PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes, Journal of Solid State Chemistry, Vol. 121, 105, (1996).
陳志平, 以兩水相萃取系統純化蛋白質, 化工, 第42卷第3期, 48, 中華民國八十四年。
黃亮為、林松池,親和性兩水相萃取於蛋白質純化之應用,國立中興大學化學工程學系,博士論文,中華民國八十九年十月。
黃亮為、林松池,親和性兩水相萃取蛋白質純化應用,國立中興大學化學工程學系,博士論文,中華民國八十八年。
簡豐隆、陳志平,兩水相萃取系統結合親和性沉澱法以純化蛋白質,國立成功大學化學工程學系,碩士論文,中華民國八十二年。
陳東煌、黃智偉,銀奈米粒子之製備及其在高分子微球上之被覆研究,國立成功大學化學工程學系,碩士論文,中華民國九十三年六月。
葉桂賓、李夢輝,乙二醇(EG, DEG, TEG, T4EG, PG, DPG)水溶液及鹽類(LiCl或LiBr)+(DEG或TEG)水溶液及密度量測研究,中原大學化學工程學系,碩士論文,中華民國九十五年七月。
孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑,儀器分析,全威圖書有限公司,中華民國八十九年十二月。
張基昇、季正偉,聚乙烯乙二醇-鹽水兩相相平衡,國立台北科技大學化學工程學系,碩士論文,中華民國九十三年七月。
徐俊杰、廖俊德、王士豪,應用版式電極製作可攜式快速尿酸感測裝置,中原大學化學工程學系,碩士論文,中華民國九十二年一月。
柯清水 編著,新世紀化工化學大辭典,正文書局,中華民國八十九年二月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top