跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁德賢
研究生(外文):Te-Hsien LIANG
論文名稱:微型光學讀寫頭關鍵零組件之製造技術
論文名稱(外文):Fabricate Technology about the Key Component of Micro Optical Pickup Head
指導教授:洪國永曾繁根曾繁根引用關係
指導教授(外文):Kuo-Yung HungFan-Gang Tseng
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:微型光學讀取頭傾斜曝光技術微稜鏡K型稜鏡
外文關鍵詞:Micro optical pickup headInclined-exposure technologyMicro prismK-type prism
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:2
本論文之目的為應用傾斜曝光技術,最佳化微型光學讀取頭所需45度反射鏡及稜鏡結構之製程參數,以符合光學應用之規格。反射鏡結構採用高分子(polymer)材料製作,配合定量超低速塗佈及表面張力差異之方式,可製作出高度約1.5mm之微結構。經AFM量測此結構局部之表面粗糙度約10nm。經干涉儀量測後表面粗糙度可達約10nm。符合光學等級標準(λ/40,λ = 405nm)。因此,適合應用於如藍光光學讀取頭之微光學儲存系統中。微稜鏡結構在光學讀取頭應用上亦具有相同之功用,即做為光反射之微結構。此結構相對於微斜面鏡結構而言,具有較強健、不易因熱而產生形變之特性;此結構亦可應用於微型投影顯示器之分光元件。
為解決厚膜光阻表面不平坦於曝光時所形成之繞射現象及降低UV光穿透不同介質之折射率匹配問題,本論文運用折射率匹配材料填充於光罩與光阻間,作為折射率匹配介質,以增加此結構於積體化製程整合之應用。此技術具有低成本、可陣列式及批次製造之優點,且可製作一對完全平行之45度面鏡結構,免除人工組裝所需龐大成本及對準之誤差。
In this paper we apply an inclined-exposure technology, while also using a polymeric material to make 3D optical micro-structure like dove prism and hardened reflecting mirrors in blue-DVD pickup head module. In contrast to the more common type of inclined mirrors, single-lensed reflecting mirrors, the micro-reflecting mirror being developed within the scope of this paper possesses the qualities that it requires no metal for its reflecting surface, and it is structurally stable. When used in micro-optical systems, it is less prone to experiencing structural changes and impact to the system’s optical paths as a result of heat generated from the light source. The fabrication technology for dove prism being developed can be used to easily fabricate highly integrated micro-optical systems. The structure being fabricated can reach a height of 1.5 mm, while the degree of surface roughness meets the necessary Marechal optic quality criterion. In this paper we will also issue of the structure of the SU-8 material being wider at the top and narrower at the bottom due to short-wavelength light source having shallower penetration. The polymeric material used has a high penetration rate of 95% (red light), and is low in cost. As such, we may apply and consolidate micro-structures in TIR, CD/DVD, SPR, and micro PIV systems, or optical systems in general. These novel methods can be employed for the fabrication of nontraditional 3D structures on photo polymer for Optical MEMS applications.
目錄
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 微光學元件 2
1.2.2 傾斜曝光技術 5
1.3 研究動機與目的 10
第二章 設計原理與分析 12
2.1 光儲存系統之構造與原理 12
2.1.1 光儲存系統之構造 12
2.2 光路設計及分析 13
2.2.1 光路設計 13
2.2.2 SU-8厚膜製作技術 15
2.2.3 Fresnel lens 18
2.2.4 微斜面鏡(Micro mirror) 19
2.3 量測原理及分析 21
2.3.1 表面輪廓誤差 21
2.3.2 表面輪廓量測 22
第三章 製程規劃及實驗結果 25
3.1 第一代分光鏡組 25
3.1.1 Fresnel lens製程步驟 25
3.1.2 Fresnel lens實驗結果 27
3.1.3 雙斜面鏡製程步驟 31
3.1.4 雙斜面鏡實驗結果 34
3.1.5 封裝製程 36
3.2 第二代分光鏡組 38
3.2.1 製程規劃 38
3.2.2 實驗結果 43
第四章 製程問題及解決方法 50
第五章 結論與未來工作 53
5.1 結論 53
5.2 未來工作 54
參考文獻 57
附錄 63
A. Fresnel zone plate設計之半徑數據 63

表目錄
表1.1比較UV光源曝光角度與曝光後微結構角度之差異 7
表1.2比較非等向性蝕刻技術及傾斜曝光技術之優缺點 10
表2.1表面輪廓參數 23
表3.1不同厚度之SU-8所需軟烤(Soft-bake)製程參數 49
表3.2不同厚度之SU-8所需曝後烤(Expose-bake)製程參數 49
表3.3 SU-8直曝單位劑量 49
表3.4 SU-8斜曝單位劑量 49

圖目錄
圖1.1為氫氧化鉀(KOH)和氫氧化鉀(KOH)加異丙醇(IPA)調配不同比例之混合液,以75℃溫度及不同蝕刻時間對矽進行非等向性蝕刻後之比較 3
圖1.2以TMAH/methoanol/H2O/IPA等四種化學溶劑混合不同比例之蝕刻液對{110}矽晶格面進行非等向性蝕刻;(a)10%/30%/40%/20%;(b)13%/37%/30%/20% 4
圖1.3 (a)(b)(c)對{110}矽晶格面蝕刻後之SEM圖;(d)整體元件之局部放大圖及(e)整體元件架構示意圖 4
圖1.4傾斜曝光之設備 5
圖1.5以Dark方式所設計之光罩進行二次不同傾斜方向曝光;(a)及(b)為製程流程圖;(c) ~ (e)分別設計圓形、六角形及長方形三種不同圖案之光罩對SU-8負型光阻進行微影製程後之結果 6
圖1.6以Clear方式所設計之光罩進行二次不同傾斜方向曝光;(a)及(b)為製程流程圖;(c) ~ (e)分別設計正方形、三角形及長方形三種不同圖案之光罩對SU-8負型光阻進行微影製程後之結果 6
圖1.7利用反射現象進行一次傾斜曝光;(c) ~ (e)分別設計圓形、三角形及長方形三種不同圖案之光罩對SU-8負型光阻進行微影製程後之結果 7
圖1.8 UV光源穿透不同介質之折射 7
圖1.9以傾斜曝光技術製作出應用於微流道之Filter結構;(a)為其製程流程圖;(b)微流道之Filter結構局部示意圖;(c)及(d)分別為± 45°傾斜角及0°、45°傾斜角之之Filter結構 8
圖1.10 (a)(b)可傾斜之光罩/基板之支撐機構及傾斜曝光製程流程圖;(c)以不同之曝光角度製作出Filter微結構及(d)Filter微結構之局部放大圖 9
圖2.1光儲存系統示意圖 12
圖2.2光學讀取頭基本構造圖 13
圖2.3第一代微光學讀取頭之光路架構示意圖 14
圖2.4第二代微光學讀取頭之光路架構示意圖 15
圖2.5 SU-8厚膜製程流程圖 16
圖2.6 UV光通過不同折射率大小之光路示意圖 17
圖2.7以甘油補償方式降低UV光路偏折量之示意圖 17
圖2.8 Fresnel lens 18
圖2.9 Fresnel lens橫截面圖(a)及設計示意圖(b) 19
圖2.10 45°雙斜面鏡示意圖 20
圖2.11微稜鏡(Micro prism)之示意圖 20
圖2.12微稜鏡(Micro dove prism)示意圖 21
圖2.13光學式輪廓儀示意圖 23
圖2.14 Michelson干涉儀 24
圖2.15(a)(b) Zygo干涉儀示意圖之基本架構 24
圖3.1 Fresnel lens製程流程圖 26
圖3.2不同干涉條紋之Fresnel lens顯影後之結果 27
圖3.3 Lift-off製程後之Fresnel lens 28
圖3.4 Fresnel lens顯影後之最小干涉條紋局部放大圖 29
圖3.5 Lift-off製程後之Fresnel lens最小干涉條紋局部放大圖 29
圖3.6 Fresnel lens聚焦情形 30
圖3.7雙斜面鏡之製程流程圖 33
圖3.8 45°斜面鏡之正視SEM 34
圖3.9 45°斜面鏡之俯視SEM圖 34
圖3.10以原子力學顯微鏡(AFM)量測雙斜面鏡之表面粗糙度結果 35
圖3.11 SU8-2035 厚膜製作技術 35
圖3.12 45°雙斜面鏡之實體圖 36
圖3.13 (a)包覆SU-8光阻後45°雙斜面鏡之實體圖與(b)單一元件之實體圖 37
圖3.14微反射鏡製程流程圖 40
圖3.15微稜鏡(Micro prism)之製程流程圖 41
圖3.16微稜鏡(Micro dove prism)之製程流程圖 42
圖3.17微反射鏡(Micro mirror)之SEM圖 44
圖3.18微反射鏡(Micro mirror)之側視SEM圖 44
圖3.19微稜鏡(Micro prism)之側視SEM圖 45
圖3.20微稜鏡(Micro prism)之SEM圖 45
圖3.21以Wyko干涉儀量測微稜鏡斜面粗糙度之測試結果 46
圖3.22微稜鏡(Micro prism)搭配非球面鏡(Aspherical lens)之微光學讀取頭 46
圖3.23微稜鏡(Micro dove prism)之SEM圖 47
圖3.24微稜鏡(Micro dove prism)之細部SEM圖 47
圖3.25微稜鏡(Micro dove prism)之細部SEM圖 48
圖3.26單片式DLP投影機 48
圖4.1 SU8-2035光吸收率關係圖 51
圖4.2 不同光罩圖形微影製程後所得之微結構;(a)正方形之圖形及(b)長方形之圖形 51
圖4.3 (a)因反射現象導致結構失敗之SEM圖;(b)軟烤不足;(c)黏光罩導致結構變形;(d)底部較頂部寬之結構;(e)(f)微稜鏡之底部空隙及無空隙之比較 52
圖5.1第二代分光鏡組之光路架構圖 54
圖5.2二次不同角度之傾斜曝光製程流程圖 55
圖5.3整合Micro prism及Turning mirror之微光學元件;(a)側視圖;(b)(c)(d)不同角度之俯視圖及(e)(f)為K-type之側視SEM圖 56
[1]Z. D. Popovic, R. A. Sprague and G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, Vol. 27, No. 7, pp. 1281-1284, 1998.
[2]M. C. Hutley, “Optical techniques for the generation of microlens arrays,” Journal of Modern Optics, Vol. 37, No. 2, pp. 253-265, 1990.
[3]D. Daly, R. F. Stevens, M. C. Hutley and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, Vol. 1, No. 8, pp. 759-766, 1990.
[4]P. Heremans, J. Genoe, M. Kujik, R. Vounckx and G. Borghs, “Mushroom microlenses:optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photonics Technology Letters, Vol. 9, Issue. 10, pp. 1367-1369, 1997.
[5]Y. S. Lin, C. T. Pan, K. L. Lin, S. C. Chen, J. J. Yang and J. P. Yang, “Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array,” Proc. of the Micro Electro Mechanical Systems’01, pp. 337-340, 2001.
[6]C. Standman, L. Rosengren, H. G. A. Eldersig and Y. Backlund, “Fabrication of 45° mirrors together with well-defined V-grooves using wet anisotropic etching of silicon,” Journal of microelectromechanical systems, Vol. 4, No. 4, pp. 213-219, 1995.
[7]C. W. Chang and W. F. Hsieh, “Micromachined double-side 45° silicon reflectors for dual-wavelength DVD optical pickup heads,” Proc. of the Electronic Components and Technology Conference’04, Vol. 2, pp. 1390-1395, 2004.
[8]C. R. Yang, C. H. Yang and P. Y. Chen, ”Study on anisotropic silicon etching characteristics in various surfactant added tetramethyl ammonium hydroxide water solutions,” Journal of microelectromechanical systems, Vol. 15, No. 11, pp. 2028-2037, 2005.
[9]O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” Journal of Micromechanics and Microengineering, Vol. 11, No. 3, pp. 217-220, 2001.
[10]T. Mori and S. Sugawara, ”Silicon Microoptical Mirrors to Make Close Parallel Beams With Conventional Laser Diodes,” Journal of microelectromechanical systems, Vol. 14, No. 1, pp. 37-43, 2005.
[11]W. Ehrfeld, F. Gotz, D. Munchmeyer, W. Schelb and D. Schmidt, “LIGA process: Sensor construction techniques via X-ray lithography,” Proc. of the Solid-State Sensor and Actuator Workshop 1998, pp. 1-4, 1988.
[12]P. Bley, J. Gottert, M. Harmening, M. Himmelhaus, W. Menz, J. Mohr, C. Muller and U. Wallrabe, “The LIGA process for the fabrication of micromechanical and mirooptical components,” in Micro System Technologies, Berlin, Germany, pp. 302-314, 1991.
[13]G. P. Behrmann and M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Applied Optics, Vol. 36, No. 20, pp. 4666-4674, 1997.
[14]H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, Vol. 7, Issue. 3, pp. 121-124, 1997.
[15]M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud and P. Vettiger, “High-aspect-ratio ultrathick, negative-tone near-UV photoresist for MEMS applications,” Proc. of the Micro Electro Mechanical Systems‘97, pp. 518–522, 1997.
[16]F. Cros and M. G. Allen, “High aspect ratio structures achieved by sacrificial conformal coating,” Proc. of the Solid State Sensor and Actuator Workshop, pp. 261–264, 1998.
[17]M. Han, W. Lee, S. K. Lee and S. S. Lee, “Microfabrication of 3D oblique structures by inclined UV lithography,” Proc. of the Micro Total Analysis Systems Symposium‘02, Nara, Japan, pp. 106-108, 2002.
[18]H. Sato, T. Kakinuma, J. S. Go and S. Shoji, “A novel fabrication of in-channel 3D micromesh structure using maskless multi-angle exposure and its microfilter application,” Proc. of the Micro Electro Mechanical Systems’03, Kyoto, Japan, pp. 223-226, 2003.
[19]Y. K. Yoon, J. H. Park, F. Cros and M. G. Allen, “Integrated vertical screen microfilter system using inclined SU-8 structures,” Proc. of the Micro Electro Mechanical Systems’03, Kyoto, Japan, pp. 227-230, 2003.
[20]Y. K. Yoon, J. H. Park and M. G. Allen, “Multidirectional UV Lithography for Complex 3-D MEMS Structures,” Journal of microelectromechanical system, Vol. 15, No. 5, pp. 1121-1130, 2006.
[21]J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” Journal of Micromechanics and Microengineering, Vol. 11, Issue. 1, pp. 20-26, 2001.
[22]K. Y. Hung, H. T. Hu and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” Journal of Micromechanics and Microengineering, Vol. 14, No. 7, pp. 975-983, 2004.
[23]C. Strandman, L. Rosengren, H. G. A. Elderstig and Ylva Backlund, “Fabrication of 45 Mirrors Together with Well-Defined V-Grooves Using Wet Anisotropic Etching of Silicon,” Journal of microelectromechanical systems, Vol. 4, No. 4, pp. 213-219, 1995.
[24]F. G. Tseng and H. T. Hu, “A novel micro optical system employing inclined polymer mirrors and Fresnel lens for monolithic integration of optical disk pickup heads,” in the 12th International Conference on Solid-State Sensors and. Actuators(Transducers’03), Vol. 1, pp. 599-602, 2003.
[25]K. Y. Hung, H. T. Hu and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” Journal of Micromechanics and Microengineering, Vol. 14, Issue. 4, pp. 975-983, 2004.
[26]J. H. Lee, H. R. Oh, D. G. Gweon, H. Jung, J. M. Park, H. K. Yoon and J. Jeong, “Optical flying head mounted on four-wire type actuator,” Sensors and actuators A: Physical, Vol. 113, No. 1, pp. 100-105, 2004.
[27]S. H. Kim, Y. Yee, J. Choi, H. Kwon, M. H. Ha, C. Oh and J. U. Bu, “A micro optical flying head for a PCMCIA-size optical data storage,” Proc. of the Micro Electro Mechanical Systems’04, pp. 85-88, 2004.
[28]S. Kim, J. M. Park, H. Jeong, G. Park, J. Y. Kim, J. Choi and Y. Yee, “Design and fabrication technology of optical flying head for first surface magneto-optical recording,” Japanese Journal of Applied Physics, Vol. 42, Issue. 2B, pp. 1018–1021, 2003.
[29]S. H. Kim, Y. Yee, J. Choi, H. Kwon, M. H. Ha, C. Oh and J. U. Bu, “Integrated micro optical flying head with lens positioning actuator for small form factor data storage,” in the 12th International Conference on Solid-State Sensors and. Actuators(Transducers’03), pp. 607-610, 2003.
[30]C. W. Chen and F. G. Tseng, “Tunable micro-aspherical lens manipulated by 2D electrostatic forces,” in the 13th International Conference on Solid-State Sensors and. Actuators(Transducers’05), Vol. 1, pp. 376-379, 2005.
[31]S. H. Jung, K. N. Lee, Y. H. Jang and Y. K. Kim, “Novel fabrication method of self positioned and focal length tuned microlens,” in the 13th International Conference on Solid-State Sensors and. Actuators(Transducers’05), Vol. 1, pp. 372-375, 2005.
[32]S. Hata, Y. Yamada, J. Ichihara and A. Shimokohbe, “A micro lens actuator for optical flying head,” Proc. of the Micro Electro Mechanical Systems’02, pp. 507-510, 2002.
[33]S. Imanishi, M. Takeda and M. Yamamoto, N. Mukai, K. Takegi, T. Kono, “Near-field recording with 266nm laser for disc mastering process,” Proc. of the Micro Electro Mechanical Systems’02, pp. 296-298, 2002.
[34]Y. Yee, J. U. Bu, L. J. Cho, E. Yoon, S. D. Moon and S. Kang, “Micros olid immersion lens fabricatebdy micro-molding for near-fielodp tical datas torage,” Proc. of the Micro Electro Mechanical Systems’02, pp. 91-22, 2000.
[35]H. Kang and J. Kim, “EWOD(Electro-wetting on dielectric) actuated optical micro-mirror,” Proc. of the Micro Electro Mechanical Systems’06, pp. 742-745, 2006.
[36]Y. C. Tung and K. Kurabayashi, “A single-layer multiple degree of freedom PDMS on silicon dynamic focus micro lens,” Proc. of the Micro Electro Mechanical Systems’06, pp. 838-841, 2006.
[37]Y. H. Jang, K. N. Lee, D. S. Shin, Y. S. Lee and Y. K. Kim, “Single crystalline silicon micro mirror array for peptide synthesis applications,” in the 13th International Conference on Solid-State Sensors and. Actuators(Transducers’05), pp. 996-999, 2005.
[38]S. Kim, J. M. Park, H. Jeong, G. Park and J. Y. Kim, “Design and fabrication technology of optical flying head for first surface mo recording,” Proc. of the Micro Electro Mechanical Systems’02, pp. 204-206, 2002.
[39]Micro-Chem(2005), SU8-2000 datasheet from Micro-Chem. Retrieved November 30, 2006, from http://www.microchem.com/products/pdf/SU-8%202000%20Data%20Sheet%202025%20thru%202075%20Ver6.pdf
[40]Newport, Test and characterization of laser diodes: determination of principal parameters. Retrieved November 10, 2006, from http://www.omacom.co.kr/support-3.htm
[41]Melles Griot , Diode laser statistical impact on collimated beam size. Retrieved November 10, 2006, from http://www.mellesgriot.com/resourcelibrary/technicalnotes/lasers/
[42]Melles Griot , Diode laser circularization. Retrieved November 10, 2006, from http://www.mellesgriot.com/resourcelibrary/technicalnotes/lasers/
[43]Nichia , NDHV310APC-E . Retrieved November 10, 2006, from http://www.nichia.com/product/laser-main.html
[44]Elited , ELD66D5. Retrieved November 10, 2006, from http://www.elaser.com.tw/sp2-2.htm
[45]Zygo, GPI XP/D. Retrieved November 10, 2006, from http://zygo.com.tw/products/gpi/gpi_xp-d_hs_can_spec_tc.pdf
[46]國家實驗研究院儀器科技中心(民94),光機電系統整合概論。全華科技圖書公司。
[47]洪國永(民93),整合三維光學微結構之蛋白質微陣列感測系統。國立清華大學工程與系統科學研究所博士論文。
[48]陳彰偉(民93),可調變微球面透鏡與非球面透鏡之研製。國立清華大學微機電系統工程研究所碩士論文。
[49]陳炯廷(民94),設計與製作應用於光學讀取頭之微非球面透鏡。國立清華大學微機電系統工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top