跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鈺潔
研究生(外文):Chang, Yu Chieh
論文名稱:以線索提示作業探討面為基注意力
論文名稱(外文):On the exploration of surface-based attention with cuing task
指導教授:黃淑麗黃淑麗引用關係
學位類別:碩士
校院名稱:國立政治大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:108
中文關鍵詞:面為基注意力同面優勢效果線索提示作業外因性提示內因性提示
外文關鍵詞:Surface-based attentionSame-surface advantagecuing taskexogenous cueendogenous cue
相關次數:
  • 被引用被引用:1
  • 點閱點閱:548
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
面為基階段在視覺處理歷程中扮演重要角色,面表徵是高於視網膜影像的視覺表徵,本研究目的在於探討以「面表徵」為選擇基礎之注意力運作。參考過去研究者所採用的面材料,本研究改為同時呈現二個交叉斜面並進行線索提示作業,以同面優勢效果作為面為基注意力運作之指標。
本研究分成四項實驗,每項實驗皆由兩個子實驗構成,此二個子實驗分別使用「外因性線索提示作業」與「內因性線索提示作業」探討面為基注意力的運作。實驗一利用上述「面」的設計及兩種提示作業,得同面優勢效果,反映面為基注意力的運作參與其中。實驗二目的在於排除注意力根據「可能目標的斜度」進行選擇之混淆,因此將面改為擁有相同斜度且互相平行的二個斜面。注意力若根據可能目標的斜度進行選擇,則無法得同面優勢效果。結果顯示在實驗二的兩種提示作業中,仍得同面優勢效果。實驗三目的在於排除可能目標因空間排列而形成簡單的知覺組織,繼而影響注意力分配之可能性。結果顯示在外因性線索提示作業下,仍得同面優勢效果;在內因性線索提示作業下,SOA需延長至500毫秒,才展現同面優勢效果。實驗四則進一步確認在不同SOA下,面為基注意力的運作情況,結果發現:在外因性線索提示作業下,SOA為500毫秒展現同面優勢效果;內因性線索提示作業下, SOA為1000毫秒下展現同面優勢效果。
綜合而言,在外因性線索提示作業與內因性線索提示作業下皆得到同面優勢效果。當可能目標難以群聚後,在長SOA時距下,依然展現同面優勢效果。因此本研究的結果,對於面為基注意力提供了直接的支持證據。
Surface-based stage plays an important role in visual information process. Surface representation means the representation that goes beyond 2-D image representation. The purpose of this study is on the exploration of attentional selection which is based on surface representation. Referring to the surface material used before, this study adopted two interlacing slant surfaces structured by random-dot stereogram to test the effect of “same-surface advantage”.
There are four experiments and each experiment includes two sub-experiments which are exogenous cuing task and endogenous cuing task, respectively. In Experiment 1, the same-surface advantage was revealed. In Experiment 2, the confounding of “slant” was ruled out and the same-surface advantage was still kept. In Experiment 3, we reduced the possibility that candidate targets group together to form simple perceptual organization and then influence the allocation of attention. After rearrange the spatial positions of candidate targets, attention cannot select the simple perceptual organization easily. In exogenous cuing task, same-surface advantage was still revealed. In endogenous cuing task, SOA should be prolonged to 500ms, and it shows same-surface advantage. Furthermore, in Experiment 4, we manipulate three kinds of SOA and confirm the operation of surface-based attention. We found that in exogenous cuing task, SOA should be prolonged to 500ms, and it shows same-surface advantage.In endogenous cuing task, SOA should be prolonged to 1000ms, and it shows same-surface advantage.
In conclusion, it shows same-surface advantage in exogenous cuing task and endogenous cuing task. When candidate cannot group together to be selected easily, SOA should be prolonged to longer, and it still shows same-surface advantage. The results provide the direct support evidences of surface-based attention.
第一章 緒論 8
第一節 注意力選擇基礎 9
一、空間為基注意力 9
二、物體為基注意力 13
三、小結 17
第二節 面的表徵與定義 19
一、面為基表徵的意義 19
二、面為基表徵的重要性 20
三、本研究對「面」的定義 21
四、小結 23
第四節 面為基注意力 23
一、共面特性對注意力的影響 23
二、深度因素的混淆 26
三、序列呈現與同時呈現 28
四、小結 30
第五節 實驗材料的設計原理 32
一、斜度感 32
二、透明感 35
三、可能目標 37
四、小結 38
第六節 線索提示作業 39
一、外因性線索提示作業 40
二、內因性線索提示作業 42
三、小結 44
第二章 研究目的與架構 45
第三章 同面優勢效果 46
第一節 實驗一A 46
一、實驗目的 46
二、實驗方法 46
三、結果與討論 50
第二節 實驗一B 52
一、實驗目的 52
二、實驗方法 52
三、結果與討論 53
第四章 排除斜度的混淆 54
第一節 實驗二A 54
一、實驗目的 54
二、實驗方法 55
三、結果與討論 57
第二節 實驗二B 58
一、實驗目的 58
二、實驗方法 58
三、結果與討論 58
第五章 排除群聚的混淆 60
第一節 實驗三A 60
一、實驗目的 60
二、實驗方法 61
三、結果與討論 63
第二節 實驗三B 64
一、實驗目的 64
二、實驗方法 64
三、結果與討論 65
第六章 操弄刺激呈現時距 67
第一節 實驗四A 67
一、實驗目的 67
二、實驗方法 67
三、結果與討論 69
第二節 實驗四B 71
一、實驗目的 71
二、實驗方法 71
三、結果與討論 72
第七章 綜合討論 73
第一節 自主性與非自主性注意力 74
第二節 視覺訊息處理與注意力選擇 76
第三節 知覺組織的影響 77
第四節 注意力運作的時間設定 78
第八章 結論 80
參考文獻 81
附錄A 實驗程式原始碼 86
第一節 面材料程式原始碼 86
第二節 實驗流程控制原始碼 94
附錄B 實驗指導語 107
第一節 外因性線索提示作業 (範例) 107
第二節 內因性線索提示作業 (範例) 108
Abrams, R. A., & Law, M. B. (2000). Object-based visual attention with endogenous orienting. Perception and Psychophysics, 62(4), 818-833.

Berger, A., Henik, A., & Rafal, R. (2005). Competition between endogenous and exogenous orienting of visual attention. Journal of Experimental Psychology: General, 134(2), 207-221.

Cave, K. R., & Bichot, N. P. (1999). Visuospatial attention: Beyond a spotlight model. Psychonomic Bulletin & Review, 6(2), 204-223.

Cheal, M., & Lyon, D. R. (1991). Central and peripheral precuing of forced-choice discrimination. The Quarterly Journal of Experimental Psychology, 43A(4),859-880.

Downing, P., Liu, J., & Kanwisher, N. (2001). Testing Cognitive models of visual attention with fMRI and MEG. Neuropsychologia, 39, 1329-1342.

Downing, C., & Pinker, S. (1985). The spatial structure of visual attention. In M. Posner, & O. S. M. Marin (Eds.), Attention and performance XI (pp.171-187). London: Erlbaum.

Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501-517.

Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161-177.

Eriksen ,C. W., & Yeh, Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11, 583-597.

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044.

Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin.

Goldstein, E. B. (2002). Sensation and perception. (6th Ed.). USA: Wadsworth.

He, Z. J., & Nakayama, K. (1995). Visual attention to surfaces in 3-D space. Proceedings of the National Academy of Science USA, 92, 11155-11159.

He, Z. J., & Ooi, T. L. (2000). Perceiving binocular depth with reference to a common surface. Perception, 29, 1313-1334.

Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye. In J. Long & A. D. Baddely (Eds.), Attention and performance IX. Hillsdale, NJ: Erlbaum.

Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press. As cited in Goldstein (2002).

LaBerge, D. (1983). Spatial extent of attention to letters in word. Journal of Experimental Psychology: Human Perception and Performance, 9, 371-379.

Lamy, D., & Egeth, H. (2002). Object-based selection: The role of attentional shifts. Perception and Psychophysics, 64(1), 52-66.

Lamy, D. (2005). Temporal expectations modulate attentional capture. Psychonomic Bulletin and Review, 12(6), 1112-1119.

Mamassian P., & Goutcher, R. (2005). Temporal dynamics in bistable perception. Journal of vision, 5, 361-375.

Marr, D. (1978). Representing visual information. In A. Hanson & E. M. Riseman(Eds.), Computer vision systems. New York: Academic Press.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman.

Marrara, M. T., & Moore, C. M. (2000). Role of perceptual organization while attending in depth. Perception and psychophysics, 62(4), 786-799.

Nakayama, K., He, Z., & Shimojo, S. (1995). Visual surface representation: a critical link between lower-level and higher-level vision. In S. M. Kosslyn, & D. Osherson (Eds.), Visual cognition: Vol. 2. An invitation to cognitive science (2nd ed., pp. 1-70). Cambridge, MA: MIT Press.

Nakayama, K., Shimojo, S., & Ramachandran, V. S. (1990). Transparency: relation to depth, subjective contours, luminance, and neon color spreading. Perception, 19, 497-513.

O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584-587.

Palmer, S.E. (1999). Vision Science-Photons to Phenomenology. Cambridge: MIT Press.

Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D.G. Baohuis (Eds.), Attention & performance X (pp.531-556). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Posner, M. I., Nissen, M. J., & Ogden, W. C. (1978). Attended and unattended processing modes: The role of set for spatial locations. In H. L. Pick & B. J. Saltzman (Eds.), Modes of perceiving and processing information (pp. 137-158). Hillsdale, NJ: Erlbaum.

Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160-174.

Scholl, B. J. (2001). Objects and attention: the state of the art. Cognition, 80, 1-46.

Theeuwes, J., Atchley, P., & Kramer, A. F. (1998). Attentional control within 3-D space. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1476-1485.

Tyler, C. W., & Kontsevich, L. L. (1995). Mechanisms of stereoscopic processing: stereoattention and surface perception in depth reconstruction. Perception, 24, 127-153.

van Ee, R. (2005). Dynamics of perceptual bi-stability for stereoscopic slant rivalry and a comparison with grating, house-face, and Necker cube rivalry. Vision Research, 45, 27-40.

Watanabe, A., & Cavanagh, P. (1993). Transparent surfaces defined by implicit X junctions. Vision Research, 33(16), 2339-2346.

Yantis, S. (1998). Control of visual attention. In H. Pashler (Ed.), Attention (pp. 223-256).

Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of experimental psychology: Human perception and performance, 10(5), 601-621.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top