跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳庭斌
研究生(外文):wu,Ting-Pin
論文名稱:利率衍生性商品之定價與避險:LIBOR市場模型
論文名稱(外文):Pricing and Hedging Interest Rate Options in a LIBOR Market Model
指導教授:陳松男陳松男引用關係
指導教授(外文):Chen,Son-Nan
學位類別:博士
校院名稱:國立政治大學
系所名稱:金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:87
中文關鍵詞:LIBOR 市場模型利率衍生性商品股籌交換
外文關鍵詞:LIBOR Market ModelInterest Rate DerivativesEquity Swaps
相關次數:
  • 被引用被引用:1
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文第一章將 LIBOR 市場模型加入股價動態,並求出其風險中立過程下的動態模型,並利用此模型評價股籌交換契約。第二章將 LIBOR 市場模型擴展成兩國的市場模型,加入兩國股價動態,並求出風險中立過程下的動態模型,並利用此模型評價跨國股籌交換契約。本論文第二部份說明如何實際使用此模型,並使用蒙地卡羅模擬檢驗此評價模型的正確性。
This thesis includes two main chapters. Chapter 2 is entiled as "Equity Swaps in a LIBOR Market Model" and Chapter 3 is entitled as "Cross-Currency Equity Swaps in a LIBOR Market in a Model". The conclusions of this thesis are made in Chapter 4.

In Chapter 2, we extends the BGM (Brace, Gatarek and Musiela (1997))interest rate model (the LIBOR market model) by incorporating the stock price dynamics under the martingale measure. As compared with traditional interest rate models, the extended BGM model is easy to calibrate the model parameters and appropriate for pricing equity
swaps. The general framework for pricing equity swaps is proposed and applied to the pricing of floating-for-equity swaps with either constant or variable notional principals. The calibration procedure and the practical implementation are also discussed.

In Chapter 3, under the arbitrage-free framework of HJM, we
simultaneously extends the BGM model (the LIBOR market model) from a single-currency economy to a cross-currency case and incorporates the stock price dynamics under the martingale measure. The resulting model is very general for pricing almost every kind of (cross-currency) equity swaps traded in OTC markets. The calibration procedure and the hedging strategies are also provided in this paper for practical operation. The pricing formulas of the equity swaps with either a constant or a variable notional principal and with hedged or un-hedged exchange rate risk are derived and discussed as examples.
Contents

1. Introduction --------------------------------------------------------------- 1

1.1. Traditional Interest Rate Models ---------------------------------- 2

1.1.1. Vasicek model (1977) ---------------------------------------- 3

1.1.2. Hull and White (1990, HW) --------------------------------- 3

1.1.3. Heath, Jarrow and Morton (1992, HJM) ------------------- 4

1.2. Market Models ------------------------------------------------------ 6

1.2.1. The LIBOR Market Model (LMM) ------------------------- 6

1.2.2. The Swap Market Model (SMM) --------------------------- 7

1.3. The Thesis ------------------------------------------------------------ 8

2. Equity Swaps in a LIBOR Market Model --------------------------- 10

2.1. Introduction -------------------------------------------------------- 10

2.2. The Model ---------------------------------------------------------- 12

2.2.1. Step I : Arbitrage-free Extended HJM Model ------------ 13

2.2.2. Step II : The Arbitrage-Free Extended BGM Model ---- 18

2.3 Pricing Equity Swaps ---------------------------------------------- 22

2.3.1. Pricing Floating-for-Equity Swaps with a Constant Notional Principal ------------------------------------------------------- 22


2.3.2. Pricing Floating-for-Equity Swaps with Variable Notional Principal ------------------------------------------------------- 24

2.4. Calibration and Numerical Examples -------------------------- 26

Appendix A: Proof of Theorem 2.1 ---------------------------------- 30

Appendix B: Proof of Theorem 2.2 ---------------------------------- 32

Appendix C: Examining the Accuracy of the Approximation in Equation (B.4) -------------------------------------------- 37

3. Cross-currency Equity Swaps with LIBOR Market Model ------- 40

3.1. Introduction -------------------------------------------------------- 40

3.2. Arbitrage-free Extended HJM Model --------------------------- 43

3.3. Arbitrage-Free Extended BGM Model ------------------------- 51

3.4. Pricing Cross-Currency Equity Swaps -------------------------- 55

3.4.1 Pricing Hedged Cross-Currency Equity Swaps with a Constant Notional Principal (HCESC) ------------------------------- 55

3.4.2 Pricing Hedged Cross-Currency Equity Swaps with a Variable Notional Principal (HCESV) ------------------------------- 58

3.4.3 Pricing Unhedged Cross-Currency Equity Swaps with a Variable Notional Principal (UHCESV) ------------------ 60

3.5. Calibration Procedure --------------------------------------------- 62

Appendix D: Proof of Theorem 3.1 ---------------------------------- 66

Appendix E: Proof of Theorem 3.2 ----------------------------------- 71

Appendix F: Proof of Theorem 3.3 ----------------------------------- 75

4 Conclusions -------------------------------------------------------------- 80

Bibliography ---------------------------------------------------------------- 82
Amin, K. I., Jarrow, R. (1991). Pricing foreign currency
options under stochastic interest rates.
\textit{Journal of International Money and Finance}, 10, 310-329.\\

Black, F. (1976). The pricing of commodity contracts. \textit{Journal of
Financial Economics}, 3, 167-179.\\

Black, F., Scholes, M. (1973). The pricing of options and
corporate liabilities. \textit{Journal of Political Economy}, 81, 637-654.\\

Brace, A., Dun, T.A., Barton, G. (1998). Towards a central
interest rate model. Paper presented at the \textit{Conference Global Derivatives'98}.\\

Brace, A., Gatarek, D., Musiela, M. (1997). The market model of interest rate dynamics. \textit{Mathematical Finance}, 7, 127-155.\\

Brace, A., Womersley, R.S. (2000). Exact fit to the swaption volatility matrix using semidefinite programming. Paper presented at the \textit{ICBI Global Derivatives Conference}.\\

Brigo, D., Mercurio, F. (2001). \textit{Interest Rate Models: Theory
and Practice}. New York: Springer-Verlag.\\

Chance, D. M., Rich, D. (1998). The pricing of equity swaps and swaptions. \textit{Journal of Derivatives}, 5, 19-31.\\

Chang, C. C., Chung, S. L., Yu, M. T. (2002). Valuation and hedging
of differential swaps. \textit{Journal of Futures Markets}, 22,
73-94.\\

Harrison, J. M., Kreps, D. M. (1979). Martingales and arbitrage in multiperiod security markets. \textit{Journal of Economic Theory}, 20, 381-408.\\

Harrison, J. M., S. Pliska (1981). Martingales and stochastic
integrals in the theory of continuous trading. \textit{Stochastic Processes and Their Applications}, 11, 215-260.\\

Harrison, J. M., S. Pliska (1983). A stochastic calculus model of
continuous trading: complete markets, \textit{Stochastic Proc. and
Applications}, 15, 313-316.\\

Heath, D., Jarrow, R. Morton A. (1992). Bond pricing and the term
structure of interest rates: A new methodology for contingent claim
valuations. \textit{Econometrica}, 60, 77-105.\\

Hull, J. (2003). \textit{Options, Futures and Other Derivatives.}
5rd ed. New Jersey: Prentice-Hall.\\

Jamshidian, F. (1997). LIBOR and swap market models and measures.
\textit{Finance and Stochastic}, 1, 293-330.\\

Jarrow, R., Turnbull, S. (1996). \textit{Derivative Securities}. Cincinnati: South Western.\\

Kijima, M., Muromachi, Y. (2001). Pricing equity swaps in a stochastic interest rate economy. \textit{Journal of Derivatives}, 8, 19-35.\\

Marshall, J., Sorensen, E., Tuncker, A. (1992). Equity derivatives:
The plain vanilla equity swap and its variants.
\textit{Journal of Financial Engineering}, 1, 219-241.\\

Miltersen, K.R., Sandmann, K., Sondermann, D. (1997). Closed form
solutions for term structure derivatives with log-normal interest
rates. \textit{The Journal of Finance}, 52, 409-430.\\

Musiela, M., Rutkowski, M. (1997). Continuous-time term structure
model: forward measure approach. \textit{Finance and Stochastics},
4,
261-292.\\

Rebonato, R. (1999). On the simultaneous calibration of multifactor
lognormal interest rate models to Black volatilities and to the
correlation matrix. \textit{Journal of Computational Finance}, 2 (4), 5-27.\\

Rich, D. (1995). Note on the valuation and hedging of equity swaps. \textit{Journal of Financial Engineering}, 3, 323-334.\\

Rogers, C. (1996). Gaussian errors. \textit{Risk}, 9, 42-45.\\

Schlogl, E. (2002). A multicurrency extension of the lognormal
interest rate market models. \textit{Finance and Stochastics}, 6, 173-196.\\

Shreve, S. E. (2004). \textit{Stochastic Calculus for Finance II: Continuous-Time Models}. New York: Springer-Verlag.\\

Wang, M. C. Liao, S. L. (2003). Pricing models of equity swaps.
\textit{Journal of Futures Markets}, 23, 751-772.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top