|
黃興進、陳啟元、周宣光、高正雄 (2005),採用資料探勘技術建立不同醫院層級門診服務量預測模式,Journal of Taiwan Intelligent Technologies and Apply Statistics。 林傑斌、劉明德 (2006),資料採掘與OLAP的理論與實務,台北:文魁資訊股份有限公司。 朱建平 (2006),數據挖掘的統計方法及實踐,中國北京:中國統計出版社。 吳柏林 (2005),模糊統計導論:方法與應用,台灣台北:五南圖書出版有限公司。 Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R., editors. 1996. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park, CA. Han, J. and Fu, Y. Discovery of Multiple-Level Association Rules from Large Databases. Proc. of 1995 Int. Conf. on Very Large Data Bases(VLDB’95), Zich, Switzerland:420-431. Kamber. M , Han, Chiang Metarule-guided mining of multi-dimensional association rules using data cubes. BC, Canada V56A 1S6 (1997). R. Meersman. On the complexity of mining quantitative association rules. In Data Mining and Knowledge Discovery,2,263-281,1998. Ozden, B., S. Ramaswamy. and A. Silberschatz. 1998. Cyclic Association Rules. Proc. of 1998 Int. Conf. Data Engineering(ICDE’98):412-421. Piatetsky-Shapiro, G. and Frawley, W. J., editors, 1991. Knowledge Discovery in Databases, AAAI/MIT Pres, Menlo Park, CA. T. Fukuda,Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. In Pro. ACM SIGMOD Int. Conf. Management of Data, pages13-23, Montreal, Canada, 1996. T. Brij, G. Swinnen, K. Vanhoof, and G. Wets. Building an association rules framework to improve product assortment decisions. In Data Mining and Knowledge Discovery, pages7-23, 2004. Y. Aumann., and Y. Lindell. A statistical theory for quantitative association rules. In Journal of Intelligent Information System, pages 255-283, 2003.
|