1.Chebyshev, P. L., 1849, Theory of Congruences, St. Petersburg.
2.Weierstress, K., 1902, “Vorlesungen über die Theorie der Abelschen Transcendenten”, Collected Works, Vol.5.
3.Fredholm, E. I., 1903, “Sur une classe d''equations fonctionnelles”, Acta Mathematica, Vol.27, pp.365-390.
4.Bernstein, F., 1929, Variations und Erblichkeitsstatistikm, Berlin: Borntraeger.
5.Massonnet, C. E., Zienkiewicz, O. C., and Holister, G. S., 1965, Numerical Use of Integral Producers in Stress Analysis, London: John Wiley & Sons.
6.Mizzo, F. J., 1967, “An integral equation approach to boundary value problems of classical elastostatics”, Quarterly of Applies Mathematics, Vol.25, pp.83-89.
7.Brebbia, C. A., 1980, The Boundary Element Method for engineers, 2nd. ed., London: Plymouth.
8.Hackett, P., 1959, “An elastic analysis of rock movement caused by mining”, Trans. Inst. Min. Engrs., Vol.118, No.7, pp.421-433.
9.Salamon, M. D. G., 1964, “Elastic analysis of displacement and stresses induced by mining of seam or roof deposits part IV”, J. S. Afr. Inst. Min. Metall., Vol.65, pp.319-338.
10.Crouch, S.L. and Starfield, A.M., 1990, Boundary Element Method in Solid Mechanics, London: Unwin Hyman.
11.Burczyński, T., 1981, “The boundary element value problems for elastostatics in terms of the boundary integral equation method”, Paper of Inst. Civil Engng. of Wroclaw Tech. Uni., Vol.1, No.28, pp.61-68.
12.Ettouney, M., Benaroya, H., and Wright, J., 1989, “Boundary element methods in probabilistic structural analysis (PBEM)”, Int. J. Appl. Math. Modelling, Vol.13, pp. 432-441.
13.Wen, W. D. and Kao, D. P., 1991, “Stochastic boundary-element method for reliability of structural strength”, Int. J. Commun. in App. Num. Method, Vol.8, pp. 529-535.
14.Burczyński, T., and Skrzypczyk, J., 1997, “Theoretical and computational aspects of the stochastic boundary element method”, Int. J. Com. Methods in Appl. Mech. and Engng., Vol.168, No.1, pp.321-344.
15.Honda, R., 2005, “Stochastic BEM with spectral approach in elastostatic and elastodynamic problems with geometrical uncertainty”, Int. J. Engng. Analysis with Boundary Elements, Vol.29, No.5, pp.415-427.
16.Devore, J. L., 2000, Probability and statistics for engineering and the sciences, 5th. ed., CA, United States of America: Duxbury.
17.Wallbrecher, E., 1986, Tektonische und gefügeanalystische Arbeitsweisen, Stuttgart: Ferdinand Enke Verlag.
18.Rahman, S., and Kim, J. S., 2001, “Probability fracture mechanics for nonlinear structures”, Int. J. Pressure Vessels and Piping, Vol.78, No.4, pp.261-269.
19.杜景燦,陳祖煜,彌宏亮,汪小剛,與周家聰,2004,「三維條件下應用遺傳演算法與Monte-Carlo法確定節理岩體的綜合抗剪強度」,岩石力學與工程學報,第23卷,第13期,pp.2157-2163。
20.Das, B. M., 2001, Principles of geotechnical engineering, 5th. ed., CA, United States of America: Brooks/Cole.
21.許龍君,2003,「三維彈粘塑性位移不連續法之發展與應用」,碩士論文,國立中興大學土木工程研究所。22.Press, William H., Teukolsky, Saul A., T. Vetterling, William, and Flannery, Brian P., 1992, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd. ed., New York: Cambridge University Press.
23.潘南飛 編譯,2003,工程統計,台灣台北:全威圖書。
24.彭國倫,2001,FORTRAN95程式設計,台灣台北:�眳p資訊。