跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪建民
研究生(外文):Chien-min Hung
論文名稱:利用酸性改良劑降低粘板岩石灰性土壤pH值對土壤中鉀行為的影響
論文名稱(外文):Effect of Adding Acidifying Materials to Lower Soil pH on the Behaviors of K in Calcareous Soils
指導教授:陳仁炫陳仁炫引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:石灰性土壤鉀的Q/I關係硫磺硫酸鋁鉀肥
外文關鍵詞:Calcareous soilQuantity/intensity (Q/I) relationships of KSulfurAluminum sulfatePotassium fertilizer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
石灰性土壤因含碳酸鹽尤其是CaCO3,以及高pH值之緣故,致使土壤中K╱(Ca+Mg)比太小,植物不易利用土壤中的鉀。以酸性物質之添加來降低土壤pH值,為改良石灰性土壤的方法之一,唯以酸性物質改良石灰性土壤時對鉀行為影響之相關研究仍有限,仍需探討及評估。本研究之目的在探討以硫磺粉與硫酸鋁降低石灰性土壤pH值時,對土壤中鉀行為的影響。選取碳酸鈣含量差異大之五種石灰性土壤,分別添加不同劑量之硫磺粉與硫酸鋁,並於25℃,-33 kPa田間容水量下進行培育試驗,使各供試土壤pH值降低至約7.0及6.5,培育期間測定土壤pH值、各型態鉀含量,培育後測定pH值、各型態鉀、鈣、鎂含量及鉀的Q/I關係。鹿港與圳寮土壤分別施入高量(h)及低量(l)之硫磺粉(S)及硫酸鋁(AlS)兩種酸性改良劑,於25℃及田間容水量下培育八週,培育期後風乾再施入0, 150 mg /kg鉀(K0, K150)於25℃及田間容水量下培育四週。另於相同的溫度及田間容水量下,供試土壤先施入0, 150mg/kg鉀培育四週,風乾後再施入不同含量(h, l)之兩種酸性改良劑培育八週。所有土壤樣品培育共十二週後,分別測定土壤pH值、各型態鉀、鈣、鎂的含量及鉀的Q/I關係。結果顯示硫酸鋁改良五種黏板岩石灰性土壤初期可獲得較施用硫磺粉者釋出較多的土壤溶液鉀,長期培育後黏板岩石灰性老沖積土仍能保持高量的溶液鉀,而試驗前後之黏板岩石灰性新沖積土之土壤溶液鉀含量則無顯著差異。添加酸性改良劑於土壤可促進土壤非交換性鉀的釋出,但非交換性鉀含量較低,農業活動較頻繁之員林土壤則出現鉀的固定作用。酸化石灰質土促使土壤ARKo下降至1×10-3(mol/L)1/2甚至更低,會使土壤鉀之供應不利於植物中長期生長時吸收利用,而高的PBCK值顯示應施用大量的鉀肥及減少鉀肥施用的頻率。先添加硫磺粉後添加鉀肥之鹿港土壤造成後添加的鉀肥在土壤中以溶液鉀的型態為主,添加較低量的硫磺粉之處理則能提升土壤交換性鉀量。後添加不同量的硫磺粉對土壤中三態鉀的分布影響較小,此現象亦出現在先添加硫酸鋁的處理,後添加硫酸鋁的處理則促進鉀離子的吸附增加交換性鉀量,添加高量的硫酸鋁促進鉀離子的吸附增加量較低。後施入的鉀肥無法被改良後之圳寮土壤吸附或固定,而先施入鉀肥之處理因部分的鉀吸附在特定位置或進入礦物層間固定,之後添加的酸性改良劑並不能交換出這些位置的鉀。本試驗鹿港與圳寮土壤ARKo值的下降顯現施入硫磺粉和硫酸鋁培育後供應植物鉀的能力均較未試驗的原土壤低,試驗後高的PBCK值顯示若欲再施鉀肥則可施用大量的鉀肥及減少鉀肥施用的頻率。先施用鉀肥培育後,再施用低量的硫酸鋁為以施用硫磺粉或硫酸鋁改良石灰性的鹿港與圳寮土壤時最佳的改良策略。
Abstract

Carbonates, particularly CaCO3, in calcareous soils with a high soil pH, result in a K/(Ca+Mg) value that is very small and the plants cannot efficiently use the potassium. One way to improve calcareous soil is to lower its pH value by applying acidic amendments. However, research on the effect of the acidic amendments on the behaviors of K in calcareous soils is limited and further assessments are required. The objectives of this study were to investigate the behavior of K when sulfur(S) and aluminum sulfate[Al2(SO4)3•14H2O] (AlS) were applied to reduce the pH of calcareous soils. Five calcareous soils with different CaCO3 levels were examined. Incubation was performed while different amounts of S and Al2(SO4)3•14H2O were applied to the soil until the soil pH was lowered to 7.0 and 6.5 under the condition of 25℃ and -33kPa water potential. The pH values, and the concentrations of different forms of K in the soils were measured throughout the incubation period. The pH values, various concentrations of forms of Ca, Mg and K as well as the quantity/intensity (Q/I) relationships of K were measured after the incubation. An eight week incubation period was performed while different amounts of S and Al2(SO4)3•14H2O were applied to the Lukang and Chunliao soils until the soil pH was lowered to 7.0 and 6.5 under the condition of 25℃ and -33kPa water potential. After air dry, the soil incubated four weeks with 0, 150 mg K/kg under the same temperature and water potential. The another incubation were added K fertilizer then applied S and Al2(SO4)3•14H2O. The pH values, and the concentrations of different forms of K in the soils were measured throughout the incubation period. After a twelve week incubation period, the pH values, various concentrations of forms of Ca, Mg and K as well as the quantity/intensity (Q/I) relationships of K were measured after the incubation. The result of applying acidic amendments to five types of soils indicated that more solution K was released than S when applying Al2(SO4)3•14H2O during the initial stage. A rich concentration of solution K was retained in these five types of soils, even after being incubated for eight weeks. The addition of acid amendments promoted the release of non-exchangeable K in slate calcareous alluvial soils. Nevertheless, a fixation did occur for soils with a lower non-exchangeable K content and frequently farming such as the Yuanlin soil. Acidification of calcareous soil lowered the ARKo to be as low as 1×10-3(mol/L)1/2 or less. This result did not improve the soil supply of K to the plants after the short term. However, the high potential buffering capacity of K (PBCK) indicated that the frequency of using K fertilizer should be reduced, and a large amount of K fertilizer should be needed. The result of applying S then adding K fertilizer to Lukang soil indicated that most added K fertilizer in soil was solution K. Lower quantity of S applied could increase exchangeable K in Lukang soil. The S which added than K fertilizer was less effect three K forms in soil. In the other the Al2(SO4)3•14H2O added was increased th soil exchangeable K but increased less in higher Al2(SO4)3•14H2O added treatment. After applying acidic amendments, the K fertilizer that added then acidic amendments didn’t absorb or fix with Chunliao soil. Before the acidic amendments adding, K fertilizer provided more specific sites K on soil minerals, and the added acidic amendments can’t adsorb it. Acidification of calcareous soil lowered the ARKo value. This result did not improve the Lukang and Chunliao soils supply of K to the plants then check. However, the high potential buffering capacity of K (PBCK) indicated that the frequency of using K fertilizer should be reduced, and a large amount of K fertilizer should be needed. After K fertilizer incubation, applying lower quantity of Al2(SO4)3•14H2O is the best method to improve calcareous Lukang and Chunliao soil with S or Al2(SO4)3•14H2O.
目錄
頁次
中文摘要.................................................................................................I
英文摘要...............................................................................................III
目錄.......................................................................................................VI
表次......................................................................................................VIII
圖次.......................................................................................................XII

壹、前言.................................................................................................1
貳、前人研究.........................................................................................3
一、本省石灰性土壤的分佈及潛在問題.........................................3
二、降低石灰性土壤pH值的改良劑及其效應..............................3
(一)硫磺(Sulfur)(So)..................................................................4
(二)硫酸(Sulfuric acid)..............................................................5
(三)硫酸鋁(Aluminum sulfate)(AlS)..........................................6
三、石灰性土壤的鉀行為.................................................................6
四、土壤鉀的量度-強度關係(Q/I relationship)..............................8
參、研究方法.........................................................................................12
一、土壤性質測定.............................................................................12
(一)基本土壤性質測定.............................................................12
(二)各種鉀型態有效性指標.....................................................13
(三)土壤中K的Q/I關係圖.....................................................13
二、酸性改良劑.................................................................................14
三、供試土壤.....................................................................................15
四、試驗方法.....................................................................................15
試驗一:添加不同量之硫磺粉及硫酸鋁於石灰性土壤中對
土壤pH值及土壤鉀行為的影響................................15
試驗二:先後添加不同量之鉀肥與酸性改良劑對土壤中
鉀型態的影響...............................................................16
肆、結果與討論...................................................................................22
一、酸性改良劑的添加對石灰性土壤鉀行為的影響...................22
(一)供試土壤的基本性質.........................................................22
(二)添加兩種酸性改良劑後土壤pH變化情形......................22
(三)添加兩種酸性改良劑後土壤各形態鉀量的變化情形.....29
二、酸性改良劑的添加對石灰性土壤鉀Q/I圖的影響................42
三、酸性改良劑與鉀肥的添加順序對石灰性土壤pH及
陽離子的影響...........................................................................48
四、酸性改良劑與鉀肥的添加順序對石灰性土壤
鉀Q/I圖的影響………………………………………………63
伍、結論...............................................................................................68
陸、參考文獻.......................................................................................69
附表.......................................................................................................79
附圖......................................................................................................101

表次
頁次
表一、供試土壤施入高量(h)及低量(l)之硫磺粉及硫酸鋁量.............18
表二、試驗處理表.................................................................................19
表三、供試土壤之基本性質.................................................................20
表四、施入不同量的硫磺粉於石灰質土壤培育八週後對
土壤各型態鉀含量之影響.........................................................37
表五、施入不同量的硫酸鋁於石灰質土壤培育八週後對
土壤各型態鉀含量之影響…………………………………….38
表六、施入不同量的硫磺粉於石灰質土壤培育八週後對
土壤溶液性與交換性鉀、鈣、鎂含量之影響.........................39
表七、施入不同量的硫酸鋁於石灰質土壤培育八週後對
土壤溶液性與交換性鉀、鈣、鎂、鈉含量之影響.................40
表八、供試土壤鉀Q/I關係圖之常數..................................................43
表九、施入不同量的硫磺粉於石灰質土壤培育八週後對
土壤鉀Q/I關係圖常數之影響..................................................45
表十、施入不同量的硫酸鋁於石灰質土壤培育八週後對
土壤鉀Q/I關係圖常數之影響..................................................46
表十一、添加酸性改良劑培育前施入的鉀肥對鹿港土壤
各型態鉀淨變化量之影響.....................................................52
表十二、添加酸性改良劑培育後再施入的鉀肥對鹿港土壤
各型態鉀淨變化量之影響....................................................53
表十三、先後添加不同量之酸性改良劑與鉀肥對鹿港土壤
各型態鈣、鎂含量之影響...................................................55
表十四、添加酸性改良劑培育前施入的鉀肥對圳寮土壤
各型態鉀淨變化量之影響...................................................59
表十五、添加酸性改良劑後培育再施入的鉀肥對
圳寮土壤各型態鉀淨變化量之影響...................................60
表十六、先後添加不同量之酸性改良劑與鉀肥對
圳寮土壤各型態鈣、鎂含量之影響...................................62
表十七、先後添加不同量之酸性改良劑與鉀肥對
鹿港土壤鉀Q/I關係之影響.................................................64
表十八、先後添加不同量之酸性改良劑與鉀肥對
圳寮土壤鉀Q/I關係之影響................................................65
附表一、鹿港土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化.....................................................79
附表二、員林土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化.....................................................80
附表三、社頭土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化.....................................................81
附表四、下水埔土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化.....................................................82
附表五、圳寮土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化.....................................................83
附表六、鹿港土壤添加硫磺粉及硫酸鋁之後
土壤溶液性鉀含量隨時間之變化........................................84
附表七、鹿港土壤添加硫磺粉及硫酸鋁之後
土壤交換性鉀含量隨時間之變化........................................85
附表八、鹿港土壤添加硫磺粉及硫酸鋁之後
土壤非交換性鉀含量隨時間之變化....................................86
附表九、員林土壤添加硫磺粉及硫酸鋁之後
土壤溶液性鉀含量隨時間之變化........................................87
附表十、員林土壤添加硫磺粉及硫酸鋁之後
土壤交換性鉀含量隨時間之變化........................................88
附表十一、員林土壤添加硫磺粉及硫酸鋁之後
土壤非交換性鉀含量隨時間之變化................................89
附表十二、社頭土壤添加硫磺粉及硫酸鋁之後
土壤溶液性鉀含量隨時間之變化....................................90
附表十三、社頭土壤添加硫磺粉及硫酸鋁之後
土壤交換性鉀含量隨時間之變化....................................91
附表十四、社頭土壤添加硫磺粉及硫酸鋁之後
土壤非交換性鉀含量隨時間之變化................................92
附表十五、下水埔土壤添加硫磺粉及硫酸鋁之後
土壤溶液性鉀含量隨時間之變化....................................93
附表十六、下水埔土壤添加硫磺粉及硫酸鋁之後
土壤交換性鉀含量隨時間之變化....................................94
附表十七、下水埔土壤添加硫磺粉及硫酸鋁之後
土壤非交換性鉀含量隨時間之變化................................95
附表十八、圳寮土壤添加硫磺粉及硫酸鋁之後
土壤溶液性鉀含量隨時間之變化....................................96
附表十九、圳寮土壤添加硫磺粉及硫酸鋁之後
土壤交換性鉀含量隨時間之變化....................................97
附表二十、圳寮土壤添加硫磺粉及硫酸鋁之後
土壤非交換性鉀含量隨時間之變化................................98
附表二十一、先後添加不同量之硫磺粉(S)、硫酸鋁(AlS)與
150 mg /kg鉀(K150)對鹿港土壤pH與鉀型態
消長之影響....................................................................99
附表二十二、先後添加不同量之硫磺粉(S)、硫酸鋁(AlS)與
150 mg /kg鉀(K150)對圳寮土壤pH與鉀型態
消長之影響...................................................................100


圖次
頁次
圖一、典型鉀的Q/I圖........................................................................10
圖二、鹿港土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化…………………………………….23
圖三、員林土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化…………………………………….25
圖四、社頭土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化…………………………………….26
圖五、下水埔土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化…………………………………….27
圖六、圳寮土壤添加硫磺粉及硫酸鋁之後
土壤pH值隨時間之變化…………………………………….28
圖七、鹿港土壤添加硫磺粉及硫酸鋁之後土壤各型態鉀含量
隨時間之變化...........................................................................30
圖八、員林土壤添加硫磺粉及硫酸鋁之後土壤各型態鉀含量
隨時間之變化...........................................................................32
圖九、社頭土壤添加硫磺粉及硫酸鋁之後土壤各型態鉀含量
隨時間之變化...........................................................................33
圖十、下水埔土壤添加硫磺粉及硫酸鋁之後土壤各型態鉀含量
隨時間之變化...........................................................................34
圖十一、圳寮土壤添加硫磺粉及硫酸鋁之後土壤各型態鉀含量
隨時間之變化.......................................................................35
圖十二、先後添加不同量之硫磺粉(S)與150 mg /kg鉀(K150)對
鹿港土壤pH與鉀型態消長之影響....................................49
圖十三、先後添加不同量之硫酸鋁(AlS)與150 mg /kg鉀(K150)對
鹿港土壤pH與鉀型態消長之影響....................................51
圖十四、先後添加不同量之硫磺粉(S)與150 mg /kg鉀(K150)對
圳寮土壤pH與鉀型態消長之影響....................................57
圖十五、先後添加不同量之硫酸鋁(AlS)與150 mg /kg鉀(K150)對
圳寮土壤pH與鉀型態消長之影響....................................58
附圖一、鹿港土壤之X-ray繞射圖………………………………..101
附圖二、員林土壤之X-ray繞射圖………………………………..102
附圖三、社頭土壤之X-ray繞射圖………………………………..103
附圖四、下水埔土壤之X-ray繞射圖……………………………..104
附圖五、圳寮土壤之X-ray繞射圖………………………………..105
附圖六、施入不同量的酸性改良劑於鹿港土壤培育八週後
鉀的Q/I關係圖…………………………………………..106
附圖七、施入不同量的酸性改良劑於員林土壤培育八週後
鉀的Q/I關係圖…………………………………………..107
附圖八、施入不同量的酸性改良劑於社頭土壤培育八週後
鉀的Q/I關係圖…………………………………………..108
附圖九、施入不同量的酸性改良劑於下水埔土壤培育八週後
鉀的Q/I關係圖…………………………………………..109
附圖十、施入不同量的酸性改良劑於圳寮土壤培育八週後
鉀的Q/I關係圖…………………………………………..110
方佳琪。1999。土壤水分與溫度境況對鉀型態轉換之影響。國立中興大學土壤環境科學系碩士論文。
王怡雯。1998。石灰施用對強酸性土壤鉀行為之影響探討。國立中興大學土壤環境科學系碩士論文。
史瑞和、鮑士旦。1986。土壤農化分析。農業出版社。南京市。中國。
李達源。1983。花生固氮能力與土壤性質的關係。國立台灣大學農化研究所碩士論文。
林正鈁、蔡彰輝。1994。台灣耕地土壤及作物適栽性評估圖鑑。國立中興大學土壤學系研究所。
林永鴻。1993。台灣農地土壤鉀的量度-強度關係及其模擬。國立台灣大學農化研究所碩士論文。
郭魁士。1992。土壤學。中國書局。
康敏捷。1992。模擬酸雨對蓮花池森林土壤陽離子之淋溶作用。國立台灣大學農化研究所碩士論文。
趙靖豐。2001。以硫磺及硫酸鋁改良石灰質土壤策略下對磷行為的探討。國立中興大學土壤環境科學研究所碩士論文。
顏正中。1996。本省主要土類土壤鉀有效性之評估。國立中興大學土壤環境科學研究所碩士論文。
林家棻。1978。本省中部若干土壤中鉀釋放特性之研究。中華農業研究。27(4): 297-308。
林永鴻、洪崑煌。1998。若干台灣農地土壤中鉀的量度-強度關係。中國農化會誌。36(3)219-228。
陳仁炫、趙靖豐。2002。酸性改良劑的添加對石灰質土壤pH改變的影響。台灣農業與食品化學。40(6):427-736。
陳仁炫、顏正中。1998。三種台灣土壤的鉀供應特性及鉀肥施用效應之研究。中國農化會誌。36(1):181-191。
莊作權、方士烈、謝德上。 1967。臺灣蔗田土壤中鉀素釋放能力與甘蔗產量之關係。中華農化會誌。5(3&4): 100-109。
Abo-Rady, M. D. K., O. Duheash, M. Khalil, and A. M. Turjoman. 1988. Effect of elemental sulphur on some properties of calcareous soils and growth of date palm seedlings. Arid Soil Res. Rehab., 2: 121-130.
Adams, F. 1974. Soil solution. In: The Plant and Its Environment. (E. W. Carson ed.), pp. 441-481. Univ. Press of Virginia, Harlottesville, VA, USA.
Aide, M. T., G. J. Cwick, and M. F. Cummings. 1999. Clay mineralogy and potassium atatus of selected soils in the glacial Lake Agassiz region of central Manitoba. Can. Soil Sci., 79: 141-148.
Barber, S. A. 1995. Soil nutrient bioavailability: a mechanistic approach. 2nd edition. John Wiley and Sons, Inc. NY, USA.
Barnhisel, R., and P. M. Bertsch. 1982. Aluminum. In: Methods of Soil Analysis. (A. L. Page, R. H. Miller and D.R. Keeney eds.), Part II, 2nd ed. Agronomy 9: 275-300. ASA, Madison, Wisconsin, USA.
Beckett, P. H. T. 1964a. Studies on soil potassium. I. Confirmation of the ratio law: Measurement of potassium potential. J. soil Sci., 15: 1-8.
Beckett, P. H. T. 1964b. Studies on soil potassium. II. The ‘immediate’ Q/I relations of labile potassium in the soil. J. Soil Sci., 15: 9-23.
Borraord, O. K. 1981. Selective extraction of amorphous iron oxide by EDTA from soil from Denmark and Tanzania. Soil Sci., 32: 427-432.
Cassell, D. K., and A. Klute. 1986. Water potential. In: Methods of Soil Analysis. (A. Klute et al., ed.), Part I, 2nd ed. Agronomy 9: 563-596. ASA, Madison, Wisconsin, USA.
Classen, N., M. Syring, and A. Jungk. 1986. Verification of a mathematical model by simulating potassium uptake from soil. Plant soil. 95: 209-220.
Evangelou, V. P., and Karathanasis. 1986. Evalvation of potassium quantity-intensity relationships by computer model employing the gapon equation. Soil Sci. Soc. Am. J., 50: 58-62.
Falatah. A. G., and A. M. Al-darby. 1993. Chemical properties of a calcareous soils as affected by tillage practices in Saudi Arabia. Arid Soil Research and Rehabilitation. 7: 347-353.
Fixen, P. E., A. E. Ludwick, and S. R. Olsen. 1983. Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soil:II. Soil phosphorus solubility relationships. Soil Sci. Soc. Am. J., 47: 112-117.
Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In: Methods of Soil Analysis. (A. Klute ed.), Part I, 2nd ed. Agronomy 9: 404-408. ASA, Madison, Wisconsin, USA.
Griffin, R. A., and J. J. Jurinak. 1973. Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soils extracts. Soil Sci., 116: 26-30.
Grossman, R. B., and J. C. Millet. 1961. Carbonate removal from soils by a modification of the acetate buffer method. Soil Sci. Soc. Am. Proc., 25: 325-326.
Guadalix, M. E., and M. T. Pardo. 1991. Sulphate sorption by variable charge soils. J. Soil Sci., 42: 607-614.
Hassan, N., and R. A. Olson. 1976. Influnce of applied sulfur on availability of soil nutrients for corn (Zea may L.) nutrition. Soil Sci. Soc. Am. Proc., 30: 284-286.
Havlin, J. L., D. G. Westfall, and S. R. Olsen. 1985. Mathematical models for potassium release kinetics in calcareous soils. Soil Sci. Soc. Am. J., 49: 371-376.
Hsi, L. C., and S. C. Chang. 1960. Soil and soil fertility of Taiwan. Report on Soil and Fertilizer Uses in Taiwan R.O.C. JCRR. Plant Industry Series No.20.
Hoeft R. G. and R. C. Sorensen 1969. Micronutrient availability in three soil materials as affected by application of zinc, lime and sulphur. Soil Sci. Soc. Am. Proc., 30: 284-286.
Huang, P. M. 1979. Soil potassium reserves in ratio to crop response to potash. Proceedings of the workshops, Potash and Phosphate Institute of Canada, Saskatoon, Canada.
Jalal, M., and M. Zarabi. 2006. Kinetics of nonexchangeable-potassium release and plant response in some calcareous soils. J. plant Nutr. Soil Sci., 169: 196-204.
Jalal, M., and Z. Kolahchi. 2007. Short-term potassium release and fixation in some calcareous soils. J. plant Nutr. soil Sci., 170: 530-537.
Janzen, H. H., and J. R. Bettany. 1986. Release of available sulfur from fertilizers. Can. J. Soil Sci., 66: 91-103.
Janzen, H. H., and J. R. Bettany. 1987a. The effect of temperature and water potential on sulfur oxidation in soils. Soil Sci., 144: 81-89.
Janzen, H. H., and J. R. Bettany. 1987b Oxidation of elemental sulfur under field condition in central Saskatchewan. Can. J. Soil Sci., 67: 609-618.
Johnson, C. M., and H. Nishita. 1952. Microestimation of sulfur in plant materials, soils, and irrigation waters. Anal. Chem., 24: 736-742.
Jr. Moore, P. A., T. C. Daniel, and D. R. Edwards. 2000. Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate.
Kashirad. A., and J. Bazargani. 1972. Effect of sulphur on pH and availability of phosphorus in calcareous soils. Z. Pflanzener naehr. Bodenkd., 131: 6-13.
Kloprogge, J. T., D. Seykens, J. W. Geus, and J. B. Jansen. 1993. The effects of concentration and hydrolysis on the oligomerization and polymerization of Al (III) as evident from the 27Al NMR chemical shifts and linewidths. J. Non-Crystal. Solids. 160: 144.
Knudsen, D., and G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In: Methods of Soil Analysis. (A. L. Page, R. H. Miller and D.R. Keeney eds.), Part II, 2nd ed. Agronomy 9: 225-246. ASA, Madison, Wisconsin, USA.
Kunze, G. W., and C. I. Rich. 1959. Mineralogical methods. In: Certain Properties of Selected Southeastern United States Soils and Mineralogical Procedures for Their Study. (C. I. Rich, L. F. Seatz, and G.W. Kunze eds.). Southern Coop. Series Bul., 61: 135-146.
Lawrence, J. R., and J. J. Germida. 1988. Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci. Soc. Am. J., 52: 672-677.
le Roux, J. 1966. Studies on ionic equilibria in Natalsoils. Ph. D. diss. University of Natal, Pistermarizburg, Republic of South Africa.
le Roux, J., and M. E. Summer. 1968. Labile potassium in soils: II. Effect of fertillization and nutrient uptake on the potassium status of soils. Soil Sci., 106: 331-337.
Lee, R. 1973. The K/Ca Q/I relation and preferential adsorption sites for potassium. New Zealand soil Bureau Scientific Report II.
Lindemann, W. C., J. J. Aburto, W. M. Haffner, and A. A. Bono. 1991. Effect of sulfur source on sulfur oxidation. Soil Sci. Soc. Am. J., 55: 85-90.
Lindsay, W. L., and E. C. Moreno. 1960. Phosphate phase equilibria in soils. Soil Sci. Soc. Am. Proc., 24: 177-182.
Mathers, A. C. 1970. Effect of ferrous sulphate and sulfuric acid on grain sorghum yields. Agron. J., 62: 555-556.
McLean, E. O. 1985. Improved Lime, Phosphorus, and potassium recommendation based on double equilibration soil test methods for assessing buffering or fixation tendencies of individual soils. Commun. In Soil Sci. Plant Anal., 16: 1229-1257.
McLean, E. ., and R. H. Simon. 1958. Potassium status of some Ohio soils as revealed by greenhouse and laboratory studies. Soil Sci., 85: 324-332.
Mehra, O. P., and M. L. Jackson. 1960. Iron removal from soils and clays by a dithionite-citrate system buffer with sodium bicarbonate. In: Clays and Clay Minerals. Proc. 7th Conf. pp. 317-327. Natl. Acad. Sci. Natl. Res. Council Publ., Washington D C.
Michail, N. N., F. S. Fairs, M. W. A. Hassan, and R. G. Kerlous. 1996. Improvement of lequminous of some acidifying materials. I. Effects on yield and yield components. Fertilizer Research. 42: 87-91.
Mikkelsen, R. L., and W. M. Jarrell. 1987. Application of urea phosphate and urea sulfate to dripirrigated tomatoes grown in calcareous soil. Soil Sci. Soc. Am. J., 51: 464-468.
Mitsios, I. K., and D. L. Rowell. 1987. Plant uptake of exchangeable and nonexchangeable potassium. J. Soil Sci., 40: 317-320.
Miyamoto, S., R. J. Prather, and J. L. Stroehlein. 1975a. Sulfuric acid and leaching requirements for reclaiming sodium-affected calcareous soil. Plant Soil. 43: 573-585.
Miyamoto, S., R. J. Prather, and J. L. Stroehlein. 1975b. Sulfuric acid for the treatment of ammoniated irrigation: I. Reducing calcium precipitation and sodium hazard. Soil Sci. Soc. Am. J., 40: 305-309.
Miyamoto, S., and J. Ryan. 1976. Sulfuric acid for the treatment of ammoniated irrigation water. II. Reducing calcium precipitation and sodium hazard. Soil Sci. Soc. Am. J., 40: 309-31.
Modaihah, A. S., W. A. Al-Mustafa, and A.I. Metwally. 1989. Effect of elemental sulfur on chemical changes and nutrient availability in calcareous soil. Plant Soil. 116: 95-101.
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Methods of soil analysis, (A. L. Page, R. H. Miller and D.R. Keeney eds.), Part II, 2nd ed. Agronomy 9: 539-579. ASA, Madison, WI.
Nelson, R. E. 1982. Carbonate and gypsum. In: Methods of soil analysis, (A. L. Page, R. H. Miller and D.R. Keeney eds.), Part II, 2nd ed. Agronomy 9: 181-197. ASA, Madison, WI.
Ninggappa, N., and N. Vasuki. 1989. Potassium fixation in acid soil of Karnataka. J. Indian Soc. Soil Sci., 37: 391-392.
Nor, Y. M., and M. A. Tabatabai. 1976. Extraction and colorimetric determination of thiosulfate and tetrathionate in soils. Soil Sci., 122: 171-178.
Prather, R. J. 1977. Sulfuric acid as an amendment for reclaiming soils high in boron. Soil Sci. Soc. Am. J., 41: 1098-1101.
Polemio, M., and J. D. Rhoaoes. 1977. Determination cation exchange capacity, a new procedure for calcareous and gypsiferous soils. Soil Sci. Soc. Am. J., 41: 524-528.
Pratt, P. F. 1961. Phosphorus and aluminum interactions in the acidification of soils. Soil Sci. Soc. Am. Proc., 25: 467-469.
Rich, C. I. 1968. Mineralogy and soil potassium. In Role of potassium in agriculture, (V. J. Kilmer et al., eds): pp. 79-108. ASA, CSSA, and SSSA, Madison, WI.
Rubio, B., and F. Gil-Sotres. 1995. Potassium fixation in suspensions of soils of Galicia(N. W. Spain). Commun. Soil Sci. Plant Anal., 26: 577-591.
Ryan J. S., S. Miyamoto, and J. L. Stroehlein. 1974. Solubility of manganese, iron, zinc as affected by application of sulfuric acid to calcareous soils. Plant Soil. 40: 421-427.
Sample, E. C., R. J. Soper, and G. J. Racz. 1980. Reactions of phosphate fertilizers in soils. In The role of phosphorus in agriculture. (F.E. Khasawneh et al. eds) pp. 263-310. ASA, CSSA, and SSSA, Madison, WI.
Schneider. A. 1997. Short-term release and fixation of K in calcareous clay soils. Consequence for K buffer power prediction. European. J. Soil Sci., 48: 499-512.
Schofield, R. K. 1947. A ratio law governing the equilibrium of cations in the soil solution. Proc. Int. Congr. Pure Appl. Chem., 11: 257-261.
Sparks, D. L., and W. C. Liebhardt. 1981a. Effects of long term lime and potassium applications on quantity-intensity (Q/I) relationships in sandy soil. Soil Sci. Soc. Am. J., 45: 786-790.
Sparks, D. L., and W. C. Liebhardt. 1981b. Temperature effects on potassium exchange and selectivity in Delaware soils. Soil Sci., 133: 10-17.
Stumm, W., and J. J. Morgan. 1970. Aquatic Chemistry. Wiley-Interscience, NY.
Throup, J. T. 1969. pH effect on root growth and water uptake by plants. Agron. J., 61: 225-227.
Van Schouwenburg J. Ch., and A. C. Schuffelen. 1961. Potassium-exchange behavior of an illite. Neth. J. Agric. Sci., 11: 13-22.
Wainwright, M. 1984. Sulfur oxidation in soils. Adv. Agron., 37: 349-396.
Whitting, L. D., and W. R. Allardice. 1986. X-ray diffraction techniques. In: Methods of Soil Analysis. (A. Klute ed.), Part I, 2nd ed. Agronomy 9: 331-362. ASA, Madison, WI.
Wicklander, L. 1954. Forms of potassium in the soil. Potassium Symp., 1: 109-112.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top