跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許嘉戀
研究生(外文):Chia-Lian Hsu 許嘉戀
論文名稱:不同pH條件下無機陰離子與Fe(Ⅲ)對Cr(Ⅵ)光還原反應的影響
論文名稱(外文):The effects of inorganic anions and Fe(Ⅲ) on Cr(Ⅵ) photoreduction in a solution with different pH
指導教授:鄒裕民
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:六價鉻三價鐵陰離子同相光催化
外文關鍵詞:chromium(VI)iron(III)anionhomogeneous photocatalysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鉻的用途隨著工業發展及人類生活水準的提高而日益增加,相對地,鉻污染環境的可能性也隨其用途的增加而加劇。鉻在水體中通常以三價鉻和六價鉻兩種形態存在,兩者的物化特性和毒性相差甚大。Cr(Ⅲ)與固體粒子具高反應性,可直接沈澱或吸附在懸浮粒子上,形成難溶之氫氧化物,移動性低故溶液中Cr(Ⅲ)濃度較低,一般而言對環境危害不大;反之,Cr(Ⅵ)溶解度大,移動性高,且毒性較Cr(Ⅲ)強(約高300倍)。因此,根據化學行為和毒性間的差異,多半將環境中之Cr(Ⅵ)還原成Cr(Ⅲ)來降低其危害風險。
許多研究已證實,有機配位基與半導體於含Fe(Ⅲ)溶液,經紫外光照射後可將Cr(Ⅵ)還原生成Cr(Ⅲ)。然而於同相系統中,無機鹽類對Cr(Ⅵ)之光反應研究並不多,此反應之重要性在於電鍍廢液中常含有不同型式高濃度的無機陰陽離子,一旦這些含鉻廢液排放至水體,在光的照射下,可能對鉻的氧化還原反應有所影響。因此,本研究主要目的為探討在不同pH值(pH 1.0、1.5和2.0)條件下,Fe(Ⅲ)與陰離子(Cl-、NO3-、SO42-、ClO4-和PO43-)對於光還原Cr(Ⅵ)之影響,並進一步從動力學角度探討其反應行為與機制。
研究結果顯示,於Cl-和NO3-系統中,經中壓汞燈(100 W)的照射下,Fe(Ⅲ)的存在與否均能使Cr(Ⅵ)還原,溶液pH值降低和Fe(Ⅲ)濃度提升,有利於Cr(Ⅵ)光還原反應的進行,而改變Cr(Ⅵ)初始濃度對Cr(Ⅵ)光還原速率並無明顯之影響。此外,於含氯離子情況下,Cr(Ⅵ)的還原主要來自FeCl2+光解生成之Fe2+所引起,而於硝酸根系統,則是NO3-光解生成的NO2-所貢獻,且對照兩種環境Fe2+之生成量,更可證實此一論點。至於反應動力部分,在Cl-系統中,Fe(Ⅲ)對Cr(Ⅵ)之光還原反應行為屬零級反應(R2>0.95),此表示其速率決定步驟與Cr(Ⅵ)濃度無關;在NO3-系統中,反應級數會因濃度及pH而改變,且無任何較為符合的動力模式,此說明Cr(Ⅵ)光還原反應在NO3-存在下非常複雜,詳細反應機制仍有待釐清。而水體中所共存的陰離子,因其與Fe(Ⅲ)形成錯合物時,會造成氧化還原電位的改變,導致對光還原Cr(Ⅵ)之影響有所不同,在單一體系中,影響大小依序為Cl- > SO42- > ClO4- > NO3-,含10 mM Cl-復合體系則是PO43- > SO42- > ClO4- NO3-。因此,根據本研究結果得知,應可利用電鍍廢液之基本特性,經UV光照射來還原處理水中Cr(Ⅵ),以降低Cr(Ⅵ)的污染與危害。
The detrimental impact of chromium to the environment gradually increased accompanied with the extensive utilization of chromium due to its requirement to the development of industries and to improve the living standard for human. Chromium exists in water in two major oxidation forms: Cr(III) and Cr(VI). There are distinct differences in physical/chemical properties and toxicities between these two Cr species. Chromium(III) has a high affinity to particles. Through the precipitation or adsorption of Cr(III) onto suspended particles, the concentration and mobility of Cr(III) is usually low in solutions. Contrary to Cr(III), Cr(VI) exhibits high solubility and mobility, and its toxicity is much higher than that of Cr(III). Therefore, the reduction of Cr(VI) to less toxic Cr(III) is one of the feasible strategies to decrease harmful effect s of Cr.
Many previous studies had approved that organic ligands and semiconductors could promote the reduction of Cr(VI) upon the exposure to UV/VIS light in the presence of Fe(III). Nonetheless, the photo-reduction of Cr(VI) as catalyzed by inorganic electrolytes is less mentioned in the literature. Since many electroplating wastewaters contain various inorganic anions and cations, the irradiation of the acidic solutions with these anions and cations may lead to the formation of activated radical, influencing indirectly the abiotic transformation of Cr. Therefore, the objective of this study is to evaluate the effects of pH (1~2) and various anions (i.e, Cl-, NO3-, SO42-, ClO4-, and PO42-) on the photo-reduction of Cr(VI) with or without Fe(III). The possible reaction mechanisms are also investigated through the kinetic studies.
The results showed that Cr(VI) could be rapidly reduced in the presence of Cl- and NO3- under illumination. A decrease in solution pH accompanied with the increase of Fe(III) would enhance Cr(VI) photo-reduction; however, the photo-reduction rate of Cr(VI) was less affected with an increase of Cr(VI) concentrations. The formation of Fe2+ resulting from the photolysis of Fe-Cl complexes is responsible for Cr(VI) reduction in a solution with Cl-. In the presence of NO3-, the photolysis of NO3-, leading to the formation of NO2- may contribute to Cr(VI) reduction. The photo-reduction of Cr(VI) could be described using a zero-order kinetic model with R2 > 0.95 in Cl- system; however, the order of kinetic reactions would be changed with Cr(VI) concentrations and pH in NO3- system. The results demonstrate that the photo-reduction of Cr(VI) involving NO3- is very complicate, and the detail reaction mechanism merits further study.The association of anions with Fe(III) would change not only the potential of the Fe(III)/Fe(II) redox couple but also the photolytic reaction of Fe(III)-anion complexes, resulting in a drastic effect of Cr(VI) photo-reduction. In a system with single anion, the influence of Cr(VI) photo-reduction follows the order of Cl- > SO42- > ClO4- > NO3-. In a multi-anion system with 10 mM Cl-, the order is PO42- > SO42- > ClO4- ≈ NO3-, which seems to obey their complexation constants with Fe(III). That is, the anion forming a more stable complex with Fe(III) would have the greatest effect in Cr(VI) photo-reduction. Accordingly, this study provide a new pathway to convert the toxic Cr(VI) to Cr(III) without the addition of any reductants. Based on the current results, a cost-effective treatment technology may be developed by irradiating directly Cr(VI)-containing wastewaters to reduce and immobilize Cr(VI). Thus, the potential harms of Cr(VI) to ecosystem can be greatly decreased.
目 錄

摘要(中文). . . . . . . . . . . . . . . . . . . . . . .Ⅰ
摘要(英文. . . . . . . . . . . . . . . . . . . . . . . .Ⅲ
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅴ
圖次. . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅶ
表次. . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅹ
第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . .1
1-1研究緣起與目的. . . . . . . . . . . . . . . . . . . . .1
1-2研究內容. . . . . . . . . . . . . . . . . . . . . . .2
第二章 文獻回顧. . . . . . . . . . . . . . . . . . . . . .3
2-1鉻的特性與污染 . . . . . . . . . . . . . . . . . . . .3
2-1-1鉻之性質 . . . . . . . . . . . . . . . . . . . . . 3
2-1-2鉻於環境中的遷移變化 . . . . . . . . . . . . . . . 6
2-1-3環境鉻污染來源 . . . . . . . . . . . . . . . . . . 7
2-1-4鉻的危害 . . . . . . . . . . . . . . . . . . . . . 8
2-1-5法令規定.. . . . . . . . . . . . . . . . . . . . . 9
2-1-6工業電鍍廢水成分性質. . . . . . . . . . . . . . . 10
2-1-7含鉻廢水處理技術. . . . . . . . . . . . . . . . . 11
2-2光催化還原六價鉻. . . . . . . . . . . . . . . . . . .13
2-2-1光催化反應之種類. . . . . . . . . . . . . . . . . 13
2-2-2鐵對六價鉻光催化反應的影響. . . . . . . . . . . . 15
第三章 研究方法與步驟 . . . . . . . . . . . . . . . . . .18
3-1實驗試劑與器材. . . . . . . . . . . . . . . . . . . .19
3-2批次實驗步驟. . . . . . . . . . . . . . . . . . . . .20
第四章 結果與討論 . . . . . . . . . . . . . . . . . . . .25
4-1硝酸根離子系統下光還原六價鉻影響因子探討. . . . . . .25
4-1-1光照的影響. . . . . . . . . . . . . . . . . . . . 25
4-1-2初始pH對光還原Cr(Ⅵ)的影響. . . . . . . . . . . . 29
4-1-2-1溶液中不含Fe(Ⅲ)時,pH對光還原Cr(Ⅵ)的影響 . . 29
4-1-2-2溶液中含Fe(Ⅲ)時,pH對光還原Cr(Ⅵ)的影響 . . . 29
4-1-3三價鐵對光還原Cr(Ⅵ)的影響. . . . . . . . . . . . 33
4-1-4六價鉻初始濃度對光還原Cr(Ⅵ)的影響. . . . . . . . 39
4-2氯離子系統下光還原六價鉻影響因子探討. . . . . . . . .41
4-2-1光照的影響. . . . . . . . . . . . . . . . . . . . 41
4-2-2初始pH對光還原Cr(Ⅵ)的影響. . . . . . . . . . . . 44
4-2-2-1溶液中不含Fe(Ⅲ)時,pH對光還原Cr(Ⅵ)的影響 . . 44
4-2-2-2溶液中含Fe(Ⅲ)時,pH對光還原Cr(Ⅵ)的影響 . . . 44
4-2-3三價鐵對光還原Cr(Ⅵ)的影響. . . . . . . . . . . . 49
4-2-4六價鉻初始濃度對光還原Cr(Ⅵ)的影響. . . . . . . . 56
4-3無機陰離子對光還原Cr(Ⅵ)的影響. . . . . . . . . . . .58
第五章 結論 . . . . . . . . . . . . . . . . . . . . . . .65
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . .68
方湜惠。2002。超臨界CO2萃取移除廢水中重金屬之高級淨水技術,碩士論文,逢甲大學,台中。
江漢全。1996。水質分析。三民書局。
吳玟靜。2005。錳與鋁取代型針鐵礦對六價鉻之吸附及光催化反應,碩士論文,中興大學,台中。
經濟部工業局。1986。工業污染防治手冊−電鍍工廠廢水污染防治。
經濟部工業局。2002。電鍍業資源化應用技術手冊。
Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Chlordane. U.S. Department of Human and Health Services, Public Health Service, Atlanta, GA.
Anderson, R.A. 1989. Essentiality of chromium in humans. Sci. Total Environ. 86:75-81.
Bajda, T. 2005. Chromatite Ca[CrO4] in soil polluted with electroplating effluents (Zabierzow, Poland). Sci. Total Environ. 336:269-274.
Ball, J.W., and D.K. Nordstrom. 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J. Chem. Eng. Data 43:895-918.
Bartlett, R.J., and B.R. James. 1988. Chromium in the natural and human environments John. Wiley & Sons, New York.
Bartlett, R.J., and B.R. James. 1993. Redox chemistry of soils. Adv. Agron. 50:151-208.
Bartlett, R.J., and B.R. James. 1996. Methods of soil analysis. 3th ed. SSSA, Madison, WI.
Benkelberg, H.J., and P. Warneck. 1995. Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4- quantum yields. J. Phys. Chem. 99:5214-5221.
Buerge, I.J., and S.J. Hug. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 31:1426-1432.
Buxton, G.V., C.L. Greenstock, W.P. Helman, and A.B. Ross. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH•/O•- ) in aqueous solution. J. Phys. Chem. Ref. Data. 17:513-531.
Cartwright, P.S. 1984. An update on reverse osmosis for metal finishing. Plating & Surface Finishing:62-66.
Chen, D., and A.K. Ray. 2001. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56:1561-1570.
Chen, S.S., C.Y. Cheng, C.W. Li, P.H. Chai, and Y.M. Chang. 2007. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. J. Hazard. Mater. 142:362-367.
Cieśla, P., P. Kocot, P. Mytych, and Z. Stasicka. 2004. Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. A: Chem. 224:17-33.
Cotton, F.A., and G. Wilkinson. 1980. Advanced organic chemistry : a comprehensive text. 4th ed. John Wiley & Sons, New York.
Daniels, M., R.V. Meyers, and E.V. Belardo. 1968. Photochemistry of the aqueous nitrate system. I. Excitation in the 300-m.mu. band. J. Phys. Chem. 72:389-399.
David, F., and P.G. David. 1976. Photoredox chemistry of iron(III) chloride and iron(III) perchlorate in aqueous media. A comparative study. J. Phys. Chem. 80:579-583.
Deng, B., and A.T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: reactivity comparisons of different organic reductants and different oxide surfaces. Environ. Sci. Technol. 30:2484-2494.
Deng, Y., and W. Stumm. 1994. Reactivity of aquatic iron(III) oxyhydroxides- implications for redox cycling of iron in natural waters. Appl. Geochem. 9:23-36.
Eary, L.E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22:972-977.
Environmental Protection Agency, U.S. (USEPA). 1979. Environmental pollution control alternatives: the economics of wastewater treatment alternatives for the electroplating industry. EPA/625/5-79/016
Espenson, J.H. 1970. Rate studies on the primary step of the reduction of chromium(VI) by iron(II). J. Am. Chem. Soc. 92:1880-1883.
Faust, B.C., and J. Hoigne. 1990. Photolysis of Fe(Ⅲ) hydroxyl complexes as source of •OH radical in clouds, fog and rain. Atmos. Environ. 24A:79-89.
Fendorf, S.E., and G. Li. 1996. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30:1614-1617.
Gaberell, M., Y.P. Chin, S.J. Hug, and B. Sulzberger. 2003. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environ. Sci. Technol. 37:4403-4409.
Henderson, P. 1982. Inorganic geochemistry Pergamon Press, Oxford, UK.
Hug, S.J., H.U. Laubscher, and B.R. James. 1997. Iron(III) catalyzed photochemical reduction of chromium(VI) by Oxalate and Citrate in aqueous solutions. Environ. Sci. Technol. 31:160-170.
Jacobs, J.A., and S.M. Testa, 2005. Overview of chromium(Ⅵ) in the environment: background and history. In:Guertin J, Jacobs JA, Avakian CP (eds) Chromium(Ⅵ) handbook. CRC Press Inc., Boca Raton, Florida.
Johnson, C.A., L. Sigg, and U. Lindauer. 1992. The chromium cycle in a seasonally anoxic lake. Limnol. Oceanogr. 37:315-321.
Jones, G.J., B.P. Palenik, and F.M.M. Morel. 1987. Trace metal reducetion by phytoplankton: the role of plasmalemma redox enzymes1, 2. J. Phycol. 23:237-244.
Kimbrough, D.E., Y. Cohen, A.M. Winer, L. Creelman, and C. Mabuni. 1999. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 29:1-46.
King, D.W., R.A. Aldrich, and S.E. Charnecki. 1993. Photochemical redox cycling of iron in NaCl solutions. Mar. Chem. 44:105-120.
Kotaś, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 107:263-283.
Kotz, K.T., H. Yang, P.T. Snee, C.K. Payne, and C.B. Harris. 2000. Femtosecond infrared studies of ligand rearrangement reactions: silyl hydride products from Group 6 carbonyls. J. Organomet. Chem. 596:183 - 192.
Lee, K.P., C.E. Ulrich, R.G. Geil, and H.J. Trochimowicz. 1989. Inhalation toxicity of chromium dioxide dust to rats after two years exposure. The Science of The Total Environment 86:83-108.
Lim, M., K. Chiang, and R. Amal. 2006. Photochemical synthesis of chlorine gas from iron(III) and chloride solution. J. Photochem. Photobiol. A: Chem. 183:126-132.
Linsebigler, A.L., G. Lu, and J.T. Yates. 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95:735-758.
Liu, L.P., and S.R. Zhang. 1999. Treatment and utilize for the waste water from electroplating chromium. Chongqing Environ. Sci. 21:37-41.
Liu, M., D.M. Dong, B.Y. Zhang, J.M. Yang, C.H. Li, M.H. Tian, and Y. Li. 1998. Studies on the treatment of Cr(Ⅵ) in plate waste-water with photocatalysis. Acta Scientiarum Naturalium Universitatis Jilinensis 2:99-101.
Liu, Y., L. Deng, Y. Chen, F. Wu, and N. Deng. 2007. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water. J. Hazard. Mater. 139:399-402.
Luis, A.L. 2001. Chromium-catalyzed oxidation, pp. 13. University of Texas at Austin.
Lund, H.F. 1972. Industrial pollution control handbook. McGraw-Hill, New York.
Martinez, S.A., M.G. Rodriguez, and C. Barrera. 2000. A kinetic model that describes removal of chromium VI from rinsing waters of the metal finishing industry by electrochemical processes. Water Sci. Technol. 42:55-61.
Miles, C.J., and P.L. Brezonik. 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Environ. Sci. Technol. 15:1089-1095.
Milis, A., and X. Domenech. 1993. Photoassisted oxidation of nitrite to nitrate over different semiconducting oxides. J. Photochem. Photobiol., A: Chem. 72:55-59.
Miller, W.L., D.W. King, J. Lin, and D.R. Kester. 1995. Photochemical redox cycling of iron in coastal seawater. Mar. Chem. 50:63-77.
Millero, F.J. 1997. The effect of iron on carbon diozide in the oceans. Sci. Prog. 80:147-168.
Morel, F.M.M., and J.G. Hering. 1993. Principles and application of aquatic chemistry Wiley-Interscience, New York.
Mytych, P., P. Cieśla, and Z. Stasicka. 2001. Photoredox reactions of environmental chromium. Int. J. Photoenergy 3:181-186.
Nriagu, J.O. 1988. A silent epidemic of environmental metal poisoning? Environ. Pollut. 50:139-161.
Orescanin, V., L. Mikelic, S. Lulic, K. Nad, N. Mikulic, M. Rubcic, and G. Pavlovic. 2004. Purification of electroplating wastewaters utilizing waste by-product ferrous sulfate and wood fly ash. J. Environ. Sci. Heal. A 39:2437-2446.
Penpolcharoen, M., R. Amal, and M. Brungs. 2001. Degradation of sucrose and nitrate over titania coated nano-hematite photocatalysts. J. Nanoparticle Res. 3:289-302.
Pettine, M., I. Barra, L. Campanella, and F.J. Millero. 1998. Effect of metals on the reduction of chromium (VI) with hydrogen sulfide. Water Res. 32:2807-2813.
Pollution Prevention and Abatement Handbook (PPAH). 1998. Electroplating. World Bank Group.
Prairie, M.R., L.R. Evans, B.M. Stange, and S.L. Martinez. 1993. An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ. Sci. Technol. 27:1776-1782.
Price, N.M., and F.M.M. Morel. 1990. Role of extracellular enzymatic reactions in natural waters. John Wiley & Sons, New York.
Rai, D., B.M. Sass, and D.A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26:345-349.
Richard, F.C., and A.C.M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Water Res. 25:807-816.
Rowland, G.A., R. van Eldik, and L.F. Phillips. 2002. Photochemistry of concentrated sulfuric acid in the presence of SO2 and Fe(II), and implications for the cloud chemistry of Venus. J. Photochem. Photobiol. A: Chem 153:1-10.
Rush, J.D., and B.H.J. Bielski. 1985. Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2- with iron(II)/iron(III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. J. Phys. Chem. 89:5062-5066.
Seigneur, C., and E. Constantinou. 1995. Chemical kinetic mechanism for atmospheric chromium. Environ. Sci. Technol. 29:222-231.
Shriver, D.F., P.W. Atkins, and C.H. Langford. 1994. Inorganic chemistry. 2th ed. Oxford University Press, Oxford.
Shuali, U., M. Ottolenghi, J. Rabani, and Z. Yelin. 1969. On the photochemistry of aqueous nitrate solutions excited in the 195-nm band. J. Phys. Chem. 73:3445-3451.
Spruit, D., and F.C.J. van Neer. 1966. Penetration of Cr(Ⅲ) and Cr(Ⅵ). Dermatologica 132:179-182.
Stanin F.T. 2005. The transport and fate of chromium(Ⅵ) in the environment. In:Guertin J, Jacobs JA, Avakian CP (eds) Chromium(Ⅵ) handbook. CRC Press, pp 186-190.
Stumm, W., and J.J. Morgan. 1996. Aquatic chemistry chemical equilibria and rates in natural waters. 3th ed. John Wiley & Sons, New York.
Treinin, A., and E. Hayon. 1970. Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. J. Am. Chem. Soc. 92:5821-5828.
Tzou, Y.M. 2001. Surface and solution abiotic processes in the redox transformations of chromium, Texas A&M University, colleges of Texas.
Tzou, Y.M., R.H. Loeppert, and M.K. Wang. 2003. Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals. J. Environ. Qual. 32:2076-2084.
Voelker, B.M., and B. Sulzberger. 1996. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ. Sci. Technol. 30:1106-1114.
Voelker, B.M., and D.L. Sedlak. 1995. Iron reduction by photoproduced superoxide in seawater. Mar. Chem. 50:93-102.
Wagner, I., H. Strehlow, and G. Busse. 1980. Flash photolysis of nitrate ions in aqueous solutions. Z. Phys. Chem. 123:1-33.
Waite, T.D., and F.M.M. Morel. 1984. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18:860-868.
Wang, X., S.O. Pehkonen, and A.K. Ray. 2004. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 43:1665-1672.
Warneck, P., and C. Wurzinger. 1988. Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. J. Phys. Chem. 92:6278 - 6283.
Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29:255-263.
Yoneyama, H., Y. Yamashita, and H. Tamura. 1979. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 282:817-818.
Zhang, H., and R.J. Bartlett. 1999. Light-induced oxidation of aqueous chromium(III) in the presence of iron(III). Environ. Sci. Technol. 33:588-594.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top