跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉穎
研究生(外文):Yin Liu
論文名稱:開發基因轉殖水稻生產轉榖氨醯胺酵素之研究
論文名稱(外文):Development of Transgenic Rice for Producing Transglutaminase
指導教授:曾夢蛟
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:57
中文關鍵詞:轉殖水稻轉榖氨醯胺酵素
外文關鍵詞:Transgenic RiceTransglutaminase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
水稻是台灣最主要農作產業,提供國產稻米附加價值是台灣水稻產業的一大重要課題。如果能以水稻作為生物反應器來生產高價值的酵素或蛋白質,對提高稻米的附加價值是一非常可行方法。轉榖氨醯胺酵素 (transglutaminase, TGA)會使蛋白濃縮液形成膠體化,因此在食品加工上有相當高的應用價值及潛力;例如:在漢堡、肉丸、魚漿、豆腐、植物蛋白粉末等可以改善其彈性、質地、口感、風味,並可增加儲存壽命。中興大學分子生物研究所楊明德博士實驗室已由放線菌Streptomyces kentuckense中篩選出轉榖氨醯胺酵素基因 (tga)。本研究乃嘗試將tga基因分別黏接至水稻種子特有之啟動子鹽溶性球蛋白基因 (globulin) 及油膜蛋白基因 (oleosin) 之啟動子與 CaMV35S及rbcS啟動子上,利用農桿菌基因轉移的方式,轉殖到''台農67號''水稻中。本研究之目的為建立以轉殖水稻為生物反應器之系統,並探討利用水稻生產轉榖氨醯胺酵素之可行性。
本研究已完成將放線菌Streptomyces kentuckense中篩選出的轉榖氨醯胺酵素基因(tga) 構築到植物轉殖載體,利用農桿菌轉移法將pBI121-S.K-tga (CaMV35S啟動子)、pBI131-S.K-tga (rbcS啟動子)、pGlo-S.K-tga (globulin啟動子) 、pOle-S.K-tga (oleosin啟動子) 等質體之tga基因轉移到''台農67號''水稻癒傷組織,並誘導再生成植株。四種組合之轉殖均已獲得再生植株。轉殖植株以PCR、南方墨點、RT-RCR及西方墨點雜交分析,其結果顯示tga基因已存在於轉殖之水稻植株基因組中,且可正確表現tga mRNA,並表現出TGA酵素蛋白。
Abstract
Rice is the major agricultural industry in Taiwan. The major course to developing and continuing the rice agriculture in Taiwan is to providing the additive values of domestic rice. Certainly, establishing the rice bioreactor system to producing high-value enzymes and proteins is a feasible way to advance the additive values of rice.
Transglutaminase (TGA) is an enzyme capable of stabilizing protein assemblies by gamma-glutamyl-epsilon-lysine crosslinks. The specific function of transglutaminase allows their biotechnological application in the foodstuffs industry: fish products (surimi), processed meat and sausages, chesses and yoghurt, ice creams, gelatines, chocolate etc. because food texture, firmness, elasticity, or fat and salt content can be modified. Several transglutaminase genes (tga) had been cloned from Streptomyces spp. by Dr. Ming-Te Young’s laboratory in Institute of Molecular Biology, National Chung Hsing University. The purpose of this study is to explore the possibility for overproducing the TGA in rice via transformed tga gene. We attempt to establish the bioreactor system by using the rice as a model plant to producing TGA.
In this study, the tga gene isolated from Streptomyces kentuckense was constructed into plant transformation vectors driven by CaMV 35S, rbcS, oleosin, and globulin promoter. The constructed genes were transferred into TN67 rice callus via Agrobacterium-mediated transformation. The regenerated plants were primary selected by G418. The results of PCR, Southern, RT-PCR and Western hybridization analysis indicated that the tga gene was present in the genome of transformed rice, and expressed tga mRNA and TGA protein with enzyme activity.
目 錄

中文摘要………………………………….……………...…………….i
英文摘要………………………………….…………...……………….ii
目錄………………………………………………………………………..iii
圖次………………………………………………………………………..iv
前言……………………………………….………………...………….1
前人研究………………………………….………………...………….3
一、生物反應器……………………………………...……………3
二、轉穀氨醯胺酵素的生化反應………………...………………5
三、轉穀氨醯胺酵素的來源及種類……………...………………5
四、轉穀氨醯胺酵素的應用…………………………………...…7
五、水稻的再生與基因轉移…………………………………...…9
材料與方法…………………………………………………………….11
結果………………………………………………………………….....22
一、Streptomyces kentuckense的轉穀氨醯胺酵素基因 (tga)
在 E. coli菌體內之表現………………………………………22
二、構築植物轉殖載體……………….……………………………..22
三、轉穀氨醯胺酵素基因 (tga) 基因轉殖到水稻…………..23
討論…………………………………………………………………....43
參考文獻………………………………………………………………….47


圖 次

圖一 、以SDS-PAGE分析S. kentuckense之轉榖氨醯胺酵素基因在
E.coli BL21 (DE3)中表現情形................................................26
圖二 、以西方墨點分析S. kentuckense之轉榖氨醯胺酵素的情形.........27
圖三 、pGEMT-tga-His之構築流程及限制酵素圖譜..............................28
圖四 、pBI121-tga-His之構築流程及限制酵素圖譜...............................29
圖五 、pBI131-tga-His之構築流程及限制酵素圖譜...............................30
圖六 、pGlo-tga-His之構築流程及限制酵素圖譜...................................31
圖七 、pOle-tga-His之構築流程及限制酵素圖譜...................................32
圖八、以BamHI/SacI、EcoRI切割pGEMT-tga-His,確認構築載體
的正確性.......................................................................................33
圖九、以BamHI/SacI、XbaI/SacI切割pBI121-tga-His and
pBI131-tga-His,確認構築載體的正確性.....................................34
圖十、以BamHI/SacI、BamHI/EcoRI切割pGlo-tga-His及pOle-tga-
His,確認構築載體的正確性.........................................................35
圖十一、以PCR檢測植物轉殖載體S. kentuckense轉榖氨醯胺酵素基
因,確認構築載體的正確性........................................................36
圖十二、經三親交配後之農桿菌,以PCR檢測S. kentuckense轉榖氨
醯胺酵素基因..............................................................................37
圖十三、''台農67號''水稻經農桿菌感染後再生之情形.............................38
圖十四、轉移tga基因之水稻葉片DNA,經PCR反應,分析NPT II
基因之情形..................................................................................39
圖十五、轉移tga基因之水稻葉片DNA,經南方墨點雜交分析之情形..40
圖十六、轉移tga基因之水稻葉片RNA,經反轉錄聚合酵素連鎖反
應分析之情形..............................................................................41
圖十七、轉移tga基因之水稻葉片可溶性蛋白質經西方墨點雜交分析
TGA蛋白質的情形.....................................................................42
參 考 文 獻
朱文深。1998。微生物轉榖氨醯胺酶之開發與應用。食品工業月刊,30(4): 30-39。
朱文深。2003。微生物轉榖氨醯胺酶之開發。中國農業化學會,113-130。
吳介文,蔡國珍,江善宗。1996。轉麩胺酸醯胺基酶生產菌株之篩選及影響其產量因子之探討。中國農業化學會誌,34(2): 228-240。
張紅城,彭志英,越謀明,邱慧霞。1998。轉榖氨醯胺酶在食品中的應用。食品與發酵工業,24(3): 73-76。
楊育臻。2003。轉殖轉榖氨醯胺酵素基因至水稻及甘藍之研究。國立中興大學分子生物研究所碩士論文。
潘子明。2002。食品生物技術介紹。台灣農業化學會,pp.1-36。
聶方珮,謝榮峰,江善宗。2003。微生物轉麩胺酸醯胺基酶之生產條件及對大豆蛋白成膠之影響。台灣農業化學與食品科學,41(1): 37-44。
蘇基和。1996。水稻胚特有基因 (pRE 13、pRE 15、pRE18、pRE24、pRE27、pRE16J)之分析與pRE27及pRE16J殖系之染色體組DNA之選殖與分析。國立中興大學分子生物研究所碩士論文。
Abad, M. S., S. M. Hakimi, W. K. Kaniewski, C. M. Rommens, V. Shulaev, E. Lam, and D. M. Shah. 1997. Characterization of acquired resistance in lesion-mimic transgenic potato expressing bacterio-opsin. Mol. Plant Microbe Interact. 10: 635-645.
Aeschlimann, D. and M. Paulsson. 1994. Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb. Haemost. 71: 402-415.
Alaoui, S. E., S. Legastelois, A. Roch, J. Chantepie, and G. Quash, 1991. Transglutaminase activity and ε-(γ-glutamyl) lysine isopeptide levels during cell growth: an enzyme and immunological study. Br. J. Cancer 48: 221-226.
Alaoui, S. E., S. Mian, J. Lawry, G. Quash, and M. Griffin. 1992. Cell cycle kinetics, tissue transglutaminase and programmed cell death. FEBS Letters 331: 174-178.
Alaoui, S., S. Legastelois, A. M. Roch, J. Chantepie, and G. Quash. 1991. Transglutaminase activity and N epsilon (gamma glutamyl)lysine isopeptide levels during cell growth: an enzymic and immunological study. Int. J. Cancer 48: 221-226.
Alaoui, S., S. Mian, J. Lawry, G. Quash, and M. Griffin. 1992. Cell cycle kinetics, tissue transglutaminase and programmed cell death (apoptosis). FEBS Lett. 311:174-178.
Ando, Y., S. Imamura, M. K. Owada, T. Kakunaga, and R. Kannagi. 1989. Cross-linking of lipocortin I and enhancement of its Ca2+ sensitivity by tissue transglutaminase. Biochem. Biophys. Res. Commun. 163: 944-951.
Ando, Y., S. Imamura, Y. Yamagata, T. Kikuchi, T. Murachi and R. Kannagi. 1987. High-performance liquid chromatographic assay of transglutaminase and its application to the purification of human erythrocyte transglutaminase and paltelet factor XIII. J. Biochem. 101 : 1331-1337.
Anonymous, K. 1996. Production and applications of transglutaminase. The World of Ingredients. 11:46.
Araki, H. and N. Seki. 1993. Comparison of reactivity of transglutaminase to various fish actomyosins. Bull. Jap. Soc. Sci. Fish. 59: 711-716
Bate, G. W., S. A. Carle, and W. C. Piastuch. 1990. Liner DNA introduced into carrot protoplasts by electroporation undergos ligation and recircularization. Plant Mol. Biol. 14:899-908.
Benfey, P. N. and N. H. Chua. 1989. Regulated genes in transgenic plants. Science 244: 174-181.
Bishop, P. D., D. C. Teller, R. A. Smith, G. W. Lasser, T. Gilbert, and R. L. Seale. 1990. Expression, purification, and characterization of human factor XIII in Saccharomyces cerevisiae. Biochemistry 29: 1861-1869.
Chanyongvorakul, Y., Y. Matsumura, H. Sakamoto, M. Motoki, K. Ikura, and T. Mori. 1994. Gelation of bean 11S globulins by Ca2+-independent transglutaminase. Biosci. Biotech. Biochem. 58 : 864-869.
Chrispeels, M. J. and E. M. Herman. 2000. Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol. 123: 1227-1234.
Chu, C. C., C. C. Wang, C. S. Sun, C. Hsu, K. C. Yin, C. Y. Chu, and F. Y. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci. Sinica. 18: 659-668.
Chung, S. I. and J. E. Folk. 1970. Mechanism of the inactivation of guinea pig liver transglutaminase by tetrathionate. J. Biol. Chem. 245: 681-689.
Clarke, D. D., M. J. Mycek, A. Neidle, and H. Waelsch. 1959. The incorporation of amines into protein. Arch. Biochem. Biophys. 79: 338-354.
Collén, A. M. C. and C. I. Jarl. 1999. Comparison of different methods for plant regeneration and transformation of the legume Galega orientalis Lam. (goat''s rue). Plant Cell Rep. 19: 13-19.
Dadabay, C. Y., and L. J. Pike. 1989. Purification and characterization of a cytosolic transglutaminase from a cultured human tumor-cell line. Biochem. J. 264: 679-686.
De Wilde, C., H. Van Houdt, S. De Buck, G. Angenon, G. De Jaeger, and A.Del Duca, S., S. Beninati, and C. Bergamini. 1991. Identification of transglutaminase activity in the leaves of Silver Beet (Beta vulgaris L.). J. Plant. Physol. 137: 547-552.
Del Duca, S., S. Beninati, and D. Serafini-Fracassini. 1995. Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem. J. 305 ( Pt 1): 233-237.
Depicker. 2000. Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol. Biol. 43: 347-359.
Dixon R. A., Ferreira D. 2002. Molecules of interest genistein. Phytochemistry 60: 205-211
Donaldson P. A. and D. H. Simmonds. 2000. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep. 19:478–484
Dondini, L., D. Serafini-Fracassini, S. Del Duca, A. M. Bregoli, and M. Tsolova. 1994. in: Polyamines; Biological and Clinical Aspects (Caldarera, C. M., Clo, C. and Moruzzi, M. S., eds.), pp. 183-194. CLUEB, Bologna.
Dondini, L., S. Del Duca, L. Dall''Agata, R. Bassi, M. Gastaldelli, M. M. Della, A. Di Sandro, I. Claparols, and D. Serafini-Fracassini. 2003. Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta 217: 84-95.
Droste, A., G. Pasquali, M. H. Bodanese-Zanettini. 2000. Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol . Reporter. 18: 51-59.
Eitan, S. and M. Schwartz. 1993. A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Science 261: 106-108.
Finer J. J., N. A., 1988. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell. Tissue and Organ Culture 15: 125-136
Folk, J. E. 1970. Transglutaminase in “Methods in Enzymology”, Tabor, H. and Tabor, C. W. (ed.), Vol. 182, pp.586-601.
Giddings, G., G. Allison, D. Brooks, and A. Carter. 2000. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18: 1151-1155.
Goddijn, P., H. Bilo, K. Meadows, K. Groenier, E. Feskens, and B. Meyboom-de Jong. 1996. The validity and reliability of the Diabetes Health Profile (DHP)in NIDDM patients referred for insulin therapy. Qual. Life Res. 5:433-442.
Grant, J. M., L. M. J. Thomson, M. D. Pither-Joyce, T. M. Dale, P. A. Cooper. 2003. Influence of Agrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.). Plant Cell Rep. 21: 1207-1210
Hara, I., K. Wada, S. Wakabayashi, and H. Matsubara. 1976. Pumpkin (Cucurbita sp.)seed globulin I. Purification, characterization, and subunit structure. Plant Cell Physiol. 17: 799–814.
Hills, M. J., M. D. Watson, and D. J. Murphy. 1993. Targeting of oleosins to the oil bodies of oilseed rape (Brassica napus L.). Planta 189: 24-29.
Hodal L., A. Bochardt, J. E. Nielsen, O. Mattsson, F. T. Okkels.1992. Detection, expression and specific elimination of endogenous β-glucuronidase activity in transgenic and non-transgenic plants. Plant Sci. 87: 115-122.
Huang, Z., I. Dry, D. Webster, R. Strugnell, and S. Wesselingh. 2001. Plant-derived measles virus hemagglutinin protein induces neutralizing antibodies in mice. vaccine 19: 2163-2171.
Icekson, I. and Apelbaum, A. Evidence for transglutaminase acttissue. 1987. Plant Physiol. 84: 972-974.
Ichinose, A., R. E. Bottenus, and E. W. Davie. 1990. Structure of transglutaminase. J. Biol. Chem. 265: 13411-13414.
Ikura, K., T. Nasu, H. Yokota, Y. Tsuchiya, R. Sasaki and H. Chiba. 1988. Amino acid sequence of guinea pig liver transglutaminase from it cDNA sequence. Biochemistry. 27 : 2898-2905.
Jefferson, R. A.1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.
Kaneda Y., S. Tabei, K. Harada, T. Akihama, K. Kitamura 1997. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybean [Glycine max (L.) Merr.]. Plant Cell Rep 17:8–12
Kang, H. and Y. D. Cho. 1996. Purification and properties of transglutaminase from soybean (Glycine max)leaves. Biochem. Biophys. Res. Commun. 223 : 288-292.
Katsube, T., N. Kurisaka, M. Ogawa, N. Maruyama, R. Ohtsuka, S. Utsumi, and F. Takaiwa. 1999. Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol. 120: 1063–1073.
Kikuchi, Y., M. Date, K. Yokoyama, Y. Umezawa, and H. Matsui. 2003. Secretion of active-from Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-link protease from Streptomyces albogriseolus. Appl. Enviro. Microbiol. 69: 358-366.
Kim, H. C. Idler., W. W. Kim, I. G., and J. H. Han. 1991. The complete amino acid sequence of human transglutaminase K enzyme deduced from the nucleic acid sequences of cDNA clones. J. Biol. Chem. 266: 536-539.
Kitabatake, N. and E. Doi. 1993. Improvement of protein gel by physical and enzymatic treatment. Food Rev. Int. 9 : 445-471.
Klein, J. D., E. Guzman, and G. D. Kuehn. 1992. Purification and Partial Characterization of Transglutaminase from Physarum polycephalum. J. Bacteriol. 174: 2599-2605.
Kura, K., T. Nasu, H. Yokota, Y. Tsuchiya, R. Sasaki, and H. Chiba, 1988. Amino acid sequence of guinea pig liver transglutaminase from its cDNA sequence. Biochem. 27: 2898-2905.
Kura, K., T. Okomura, M. Yoshikawa, R. Sasaki, and H. Chiba. 1985. Incorporation of lysyldipepetides into food protein by transglutaminase. Agric. Biol. Chem. 49: 1877-1878.
Kurth, L., and Rogers, P. J. 1984. Transglutaminase catalyzed cross-linking of lactoglobulin. J. Agric. Food Chem. 36: 281-285.
Lawrence, M. C., T. Izard, M. Beuchat, R. J. Blagrove, and P. M. Colman. 1994. Structure of phaseolin at 2.2 Å resolution. J. Mol. Biol. 238: 748–776.
Loer, D. S. and E. M. Herman. 1993. Cell-free synthesis of the oil body membrane protein oleosin: specific cotranslational integration into microsomal membranes. Plant Physiol. 101: 993-998.
Lorand, L., A. J. Gray, K. Brown, R. B. Credo, C. G. Curtis, R. A. Domanik, and P. Stenberg. 1974. Dissociation of subunit structure of fibrin stabilizing factor during activation of the zymogen. Biochem. Biophys. Res. Commun. 56: 914-922.
Lorand, L., L. K. Campbell-Wilkes, and L. Cooperstein. 1972. A filter paper assay for transglutamidating enzymes using radioactive amine substrates. Anal. Biochem. 50: 623-631.
Ma, J. K. and N. D. Vine. 1999. Plant expression systems for the production of vaccines. Curr. Top. Microbiol. Immunol. 236: 275-292.
Matheis, G. and J. R. Whitaker. 1987. A review: enzymatic cross-linking of proteins applicable to food . J. Food Biochem. 11 : 309-329.
McGarvey, P. B., J. Hammond, M. M. Dienelt, D. C. Hooper, Z. F. Fu, B. Dietzschold, H. Koprowski, and F. H. Michaels. 1995. Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (N. Y.)13: 1484-1487.
Motoki, M. and Seguro, K. 1994. Trends in Japanese soy protein research. Inform. 5: 308-313.
Motoki, M., and N. Nio. 1983. Crosslinking between different food proteins by transglutaminase. J. Food Sci. 48: 561-656.
Motoki, M., N. Nio, and K. Takinami. 1984. Functional properties of food proteins polmerized by transglutaminase. Agric. Biol. Chem. 48: 1257-1261.
Müntz, K. 1998. Deposition of storage proteins. Plant Mol. Biol. 38: 77–99.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473-497.
Nadolska-Orczyk A. and W. Orczyk. 2000. Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Molecular Breeding 6: 185-194.
Napier, J. A., A. K. Stobart, and P. R. Shewry. 1996. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol. Biol. 31: 945-956.
Nio, N., M. Motoki, and K. Takinami. 1985. Gelation of casein and soybean globulins by transglutaminase. Agric. Biol. Chem. 49: 2283-2286.
Nonaka, M., S. Toiguchi, H. Sakamoto, H. Kawajiri, T. Soeda and M. Motoki. 1994. Changes caused by microbial transglutaminase on physical properties of thermally induced soy protein gels. Food Hydrocolloids. 8 (1):1-8.
Nozawa, H., S. Mamegoshi and N. Seki. 1997. Partial purification and characterization of six transglutaminase from ordinary muscles of various fishes and marine invertebrates. Comp. Biochem. Physiol. 118 B : 313-317.
Nozawa, H., S. Mamegoshi and N. Seki. 1997. Partial purification and characterization of six transglutaminase from ordinary muscles of various fishes and marine invertebrates. Comp. Biochem. Physiol. 118 B : 313-317.
Odell, J.T., F. Nagy, and N.-H. Chua. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812.
Olhoft P. M. and D. A. Somers. 2001. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711
Olhoft, P. M., L. E. Flagel, C. M. Donovan, and D. A. Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 5:723–35
Oscar, J., M. Goddijn, and P. Jan. 1995. Plants as bioreactors. Trends Biotech. 13, 379-387.
Piacentini, M., M. G. Farrace, C. Hassan, B. Serafini, and F. Autuori. 1999. ''Tissue'' transglutaminase release from apoptotic cells into extracellular matrix during human liver fibrogenesis. J. Pathol. 189: 92-98.
Pterson, L. L. and K. D. Wuepper. 1984. Epidermal and hair follicle transglutaminases and crosslinking in skin. Mol. Cell. Biochem. 58: 99-111.
Ramirez, N., M. Ayala, D. Lorenzo, D. Palenzuela, L. Herrera, V. Doreste, M. Perez, J. V. Gavilond, and P. Oramas. 2002. Expression of a single-chain Fv antibody fragment specific for the hepatitis B surface antigen in transgenic tobacco plants. Transgenic Res. 11:61-64.
Rogers, S. G., H. Klee, M. Byren, R. B. Horsch, and R. T. Fraey. 1988. Improved vector for plant transformation: expression cassette vector and new selectable marker. Method in Enzymology. Academic Press.
Rogers, S.G., H. Klee, M. Byren, R. B. Horsch, and R. Fraey. 1988 Improved vector for plant transformation: express cassette vector and new selectable marker. Method in Enzymology. Academic Press.
Sallaud C., D. Meynard D, J. Van Boxtel, C. Gay, M. Bčs, J. P. Rrizard, M. Raynal, M. Portefaix, P. Ouwerkerk, M. Delseny, E. Guiderdoni. 2003. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Genet. 106 : 1396-1408
Samuel, Z. 1995. Functionalized poly (ethylene glycol)for preparation of biologically relevant conjugates. Biconjugate Chem. 6: 150-165.
Schoff, P. K. and H. A. Lardy. 1987. Effects of fluoride and caffeine on the metabolism and motility of ejaculated bovine spermatozoa. Biol. Reprod. 37: 1037-1046.
Schwartz, M. L., S. T. Pizzo, R. L. Hill, and P. A. Mckee. 1971. The subunit structures of human plasma and platelet Factor XIII (Fibrin-stabilizing Factor). J. Biol. Chem. 246: 5851-5854.
Schwartz, M. L., S. V. Pizzo, R. L. Hill, and P. A. Mckee. 1973. Human factor XIII from plasma and platelets. J. Biol. Chem. 248: 1395-1407.
Seiving, B., P. Stenberg, and B. Nilsson. 1991. A new assay for transglutaminase. Scand. J. Clin. Lab. Invest. 51: 119-124.
Smith, M.D. & Glick, B.R. 2000. The production of antibodies in plant. Biotechnol. Adv. 18, 85-89
Somers, D. A., D. A. Samac, and P. M. Olhoft. 2003. Recent advances in legume transformation. Plant Physiology 131: 892-899
Spencer, M., D. Whitney, and T. J. Andrews. 2001. The Gene for the Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into rubisco. Plant Cell 13: 193-205.
Staswick, P. E., M. A. Hermodson, and N. C. Nielsen. 1984. Identification of the cystines which link the acidic and basic components of the glycinin subunits. J. Biol. Chem. 259: 13431–13435.
Takehana, S. K. Washizu, K. Ando, S. Koikeda, K. Takeuchi, H. Matsui. M. Motoki and H. takagi. 1994. Chemical synthesis of the gene for microbial transglutaminase from Streptovericillium and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 58 : 88-92.
Takehana, S. K. Washizu, K. Ando, S. Koikeda, K. Takeuchi, H. Matsui. M. Motoki, and H. takagi. 1994. Chemical synthesis of the gene for microbial transglutaminase from Streptovericillium and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 58 : 88-92.
Tanaka, T., N. Kamiya, and T. Nagamune, 2004. Peptidyl linker for proyein heterodimerization catalyzed by microbial transglutaminase. Bioconjug Chem. 15: 491-497.
Tanimoto, S. Y. and J. E. Kinsella. 1988. Enzymatic modification of proteins effect of transglutaminase cross-linking on some physical properties of β-
Tokunaga, F., T. Muta, S. Iwanaga, A. Ichinose, E. W. Davie, K-I. Kuma and T. Miyata. 1993. Limulus hemocyte transglutaminase cDNA cloning, amino acid sequence, and tissue localization. J. Biol. Chem. 268: 262-268.
Tsai, L. Y., S. L. Tu, and H. M. Li. 1999. Insertion of atToc34 into the chloroplastic outer membrane is assisted by at least two proteinaceous components in the import system. J. Biol. Chem. 274: 18735-18740.
Tuboly, T., W. Yu, A. Bailey, S. Degrandis, S. Du, L. Erickson, and E. Nagy. 2000. Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine 18:2023-2028.
Turner, D. S., D. G. McCallum, and S. N. Covey. 1996. Roles of the 35S promoter and multiple overlapping domains in the pathogenicity of the pararetrovirus cauliflower mosaic virus. J. Virol., 70(8): 4514-4521.
Walden R. J. S. 1991. Tissue culture and the use of transgenic plants to study plant development. In Vitro Cell Dev Biol. 27: 1-10
Washizu, K., K. Ando, S. Koikeda, S. Hirose, A. Matsuura, H. Takagi, M. Motoki and K. Takeuchi. 1994. Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotechnol. Biochem. 58 : 82-87.
Wegener, D., P. Steinecke, T. Herget, I. Petereit, C. Philipp, and P. H. Schreier. 1994. Express of a report gene is reduced by ribozyme in transgenic plants. Mol. Gene. Gen. 245: 465-470.
Williams-Ashman, H. G., A. C.Notides, S. S. Pabalan, and L. Lorand. 1972. Transamidase reactions involved in the enzymic coagulation of semen: isolation of γ-glutamyl-ε-lysine dipeptide from clotted secretion protein of guinea pig seminal vesicle. Proc. Natl. Acad. Sci. U. S. A. 69: 2322-2325.
Yamada, T., M. Teraishi, K. Hattori, and M. Ishimoto. 2001. Transformation of azuki bean by Agrobcaterium tumefaciens. Plant Cell, Tissue and Organ Culture 64: 47-54.
Yan, B., M. S. S. Reddy, and G. B. Collins. 2000. Agrobcaterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Rep. 19: 1090-1097.
Yano, H., J. H. Wong, M. J. Cho, and B. B. Buchanan. 2001. Redox changes accompanying the degradation of seed storage proteins in germinating rice. Plant Cell Physiol. 42(8): 879-883.
Yokoyama, K., N. Nio, and Y. Kikuchi. 2004. Properties and aoolications of microbial transglutaminase. Apply Microbiol Biotechnol. 64: 447-454.
Yu-Chun Du and R. J. Spreitzer. 2000. Suppressor mutations in the chloroplast-encoded large subunit improve the thermal stability of wild-type ribulose-1,5-bisphosphate carboxylase/oxygenase. J. Biol. Chem. 275(26): 9844-9847.
Zeng, P., D. A. Vadnais, Z. Zhang, J. C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.)Merrill]. Plant Cell Rep. 22: 478-482
Zhentu, Y., R. M. Mulligan, J. Noel, and L. H. Robert. 1999. Rubisco small and large subunit n-methyltransferases bi-and mono-functional methyltransferase that methylate the small and large subunits of rubisco. J. Biol. Chem. 274(51): 36750-36756.
Zhu, J., A. Rinzema, J. Tramper, and J. Bol. 1995. Microbial transglutaminase–a review of its production and application in food processing. Appl. Microbial. Biotechnol. 44 : 277-282.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 紀世清(2002)。羽球運動教學內容技術分析表之探討。國立體育學院論叢,13(1),47-62。
2. 涂國誠(1999)。羽球單打戰略擬定及戰術應用的分析。大專體育,45,48-53。
3. 許樹淵(1983)。羽球擊球動作技術分析。中華民國體育學會體育學報,5,11-19。
4. 陳安寶(2001)。劍道打擊手部關節運動與竹劍速度之運動學分析。北體學報,9,277-287。
5. 陳俊汕(2000)。羽球男子雙打最後一拍技術探討。中華體育,54,81-88。
6. 黃晉揚(2000)。1999年台北羽球公開賽男女選手技術與失誤之比較分析。中華民國體育學會體育學報,29。189-200。
7. 蔡虔祿、黃長福、紀世清(1995)。世界級羽球選手正手拍高手擊球動作的生物力學分析。師大體育研究,復刊號,201-227。
8. 蔡虔祿、黃長福、紀世清(1997)。我國甲組羽球選手四種正拍高手擊球動作之三度空間生物力學分析。中華民國體育學會體育學報,22,189-200。
9. 蔡崇濱(1987)。排球運動中影響跳躍力的學理探討。中華體育,5。29- 40。
10. 蔡豐任(1996)。排球扣球技術的生物力學理論基礎及其應用。大專體育,25,92-98。
11. 鄭元龍、羅月英、陳五洲(2001)。博奕理論在羽球比賽技術分析之應用-以Peter Gade 為例。中華民國體育學會體育學報,31,91-102。
12. 蘇榮立、洪得明、紀世清(1995)。羽球殺球動作之定性分析。國立體育學院論叢,5(2),173~183。
13. 朱文深。1998。微生物轉榖氨醯胺酶之開發與應用。食品工業月刊,30(4): 30-39。
14. 吳介文,蔡國珍,江善宗。1996。轉麩胺酸醯胺基酶生產菌株之篩選及影響其產量因子之探討。中國農業化學會誌,34(2): 228-240。