參考文獻
[1]C.M. Starks, “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, Jourmal of American Chemisty Society, 93 (1971) 195-199
[2]J.C. Jarrouss, “The Influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chloride Derivatives.”, C.R. Heabd. Seances Acad. Sci., 232 (1951) 1424-1434
[3]S.L. Regen, “Triphase Catalyst”, Jourmal of American Chemisty Society, 97 (1975) 5956-5958
[4]D.N. Sanjeev and L.K. Doraiswamy, “Mathematical Modeling of Solid-Liquid Phase-Transfer Catalysis”, Chemical Engineering Science, 52 (1997) 4533-4546
[5]吳俊民, “應用固-液及液-液相相間轉移觸媒合成丙烯基苯基醚之醚化反應動力學研究”, 國立中興大學化工研究所碩士論文 (2000)[6]趙承琛, “界面科學基礎”, 復文書局 (1985)
[7]L.S. Lee, and H.Y. Huang, “Liquid–liquid Equilibrium Behavior of Tetrabutylammonium Bromide, Benzene, and Water Mixture”, Fluid Phase Equilibria, 205 (2003) 133-147
[8] S.W. Park, T.Y. Kim, D.W. Park, and J.W. Lee, “Kinetics of Reaction of Benzyl Chloride with Sodium Acetate Using Tetrahexylammonium Chloride as A Phase-Transfer Catalyst”, Catalysis Today, 87 (2003) 179-186
[9]W.E. Kowtoniuk, M.E. Rueffer, D.K. MacFarland, “Synthesis And Competency of a Novel Dicationic Phase-Transfer Catalyst”, Tetrahedron: Asymmetry, 15 (2004) 151-154
[10]H.M. Yang, and C.L. Lin, “Phase-Transfer Catalyzed Benzylation of Sodium Benzoate Using Aliquat336 as Catalyst in Liquid–Liquid System”, Journal of Molecular Catalysis A: Chemical, 206 (2003) 67-76
[11]M.L. Wang, Z.F. Lee, and F.S. Wang, “Synthesis of Novel Multi-Site Phase-Transfer Catalyst and Its Application in The Reaction of 4,4′-Bis(chloromethyl)-1,1′-biphenyl with 1-Butanol”, Journal of Molecular Catalysis A: Chemical, 229 (2005) 259-269
[12]M.L. Wang, and Z.F. Lee, “Reaction of 4,4′-Bis(chloromethyl)-1,1′-biphenyl and Phenol in Two-Phase Medium Via Phase-Transfer Catalysis”, Journal of Molecular Catalysis. A, Chemical, 264 (2007) 119-127
[13]C.M. Starks, C.L. Loitta, and M. Halpern, “Phase Transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall”, New York (1994)
[14]M. Fedorynski, K. Wojciechowski, Z. Matacz, and M. Makosza, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems”, J. Org. Chem., 43 (1978) 4682
[15]S.D. Naik, and L.K. Doraiswamy, “Mathematical Modeling of Solid-Liquid Phase-Transfer Catalysis”, Chemcial Engineering Science, 52 (1997) 4533-4546
[16]H.M. Yang, P.I. Wu, and C.M. Li, “Etherification of Halo-Ester by Phase-Transfer Catalysis in Solid-Liquid System”, Applied Catalysis A: General, 193 (2000) 129-137
[17]H.M. Yang, and C. M. Wu, “Phase-Transfer Catalyzed Allylation of Sodium Phenoxide in a Solid-Liquid System”, Journal of Molecular Catalysis. A, Chemical, 153 (2000) 83-91
[18]H.M. Yang, and H.C. Liu, “Kinetics for Synthesizing Benzyl Salicylate Via Solid-Liquid Phase Catalysis”, Applied Catalysis A: General, 258 (2004) 25-31
[19]P. Tundo, and P. Venturello, “Synthesis Catalytic Activity and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts”, Jourmal of American Chemisty Society, 101 (1979) 6606-6613
[20]T. Battal, C. Siswant, and J.F. Rathman, “Synthesis of Alkylphenyl Ethers in Aqueous Surfactant Solution by Micellar Phase-transfer Catalysis. 2. Two-Phase System”, Langmuir, 13 (1977) 6053
[21]B. Thierry, J.C. Plaquevent, and D. Chard, “New Polymer-Supported Chiral Phase-Transfer Catalysis in the Asymmetric Synthesis of α-Amino Acids: the Role of a Spacer.” Tetrahedron: Asymmetry, 12 (2001) 983-986
[22]H.S. Wu, and C.S. Lee, Catalytic Activity of Quaternary Ammonium Poly(methylstryene-co-stryene)Resin in an Organic/Alkaline solution”, Journal of Catalysis, 199 (2001) 217-223
[23]H.S. Wu, and C.L. Lee, “Mechanism and NaOH Effect of Polymer-Supported Catalyst: Phosphazene Reaction”, Chemical Engineering Journal, 90 (2002) 241-251
[24]L. Li, J. Shi, J. Yan, H. Chen, and X. Zhao, “SBA-15 Supported Quaternary Salts: an Efficient Heterogeneous Phase-Transfer Catalyst” Journal of Molecular Catalysis. A, Chemical, 209 (2004) 227-230
[25]S. Baj, A. Siewniak, and B. Socha, “Synthesis of Dialkyl Peroxides in the Presence of Polymer-Supported Phase-Transfer Catalysts” Applied Catalysis A: General, 309 (2006) 85-90
[26]R. Neumann, and Y. Sasson, “Mechanism of Base Catalyzed Reaction in Phase-Transfer Systems with Poly(ethylene glycols) as Catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451
[27]D.H. Wang, and H.S. Weng, “Preliminary Study on the Role Played by the Third Liquid Phase in Phase Transfer Catalysis” Chemical Engineering Science, 43 (1988) 2019-2024
[28]D.H. Wang, and H.S. Weng, “Solvent and Salt Effect on the Formation of Third Liquid Phase and the Reaction Mechanisms in the Phase Transfer Catalysis System Reaction Between n-Butyl Bromide and Sodium Phenolate”, Chemical Engineering Science, Vol. 50, pp. 3477-3486 (1995)
[29]T. Ido, T. Yamamoto, G. Jin, and S. Goto, “Third-liquid Catalytic Activity of Halogen Exchange Reaction in Phase Transfer Catalytic System”, Chemical Engineering Science, 52 (1997) 3511-3520
[30]H.S. Weng, S.M. Kao, and H.C. Hsiao, “Synthesis of n-Butyl Phenyl Ether by Tri-Liquid-Phase Catalysis Using Poly(ethylene glycols)-600 as a Catalyst. 1. Analysis of Factor Affecting the Formation of a Third Liquid Phase”, Industrial and Engineering Chemistry Reserach, 39 (2000) 2772-2778
[31]S. Goto, T. Ido, and G. Jin, “Effect of Third-Phase Properties on Benzyl-n-butyl Ether Synthesis in Phase Transfer Catalytic System”, Catalysis Today, 64 (2001) 279-287
[32]P.J. Lin, and H.M. Yang, “Kinetics for Etherification of Sodium o-nitrophenoxide Via Third-Liquid Phase-Transfer Catalysis”, Journal of Molecular Catalysis. A, Chemical, 235 (2005) 293-301
[33]H.M. Yang, and C.C. Li, “Kinetics for Synthesizing Benzyl Salicylate by Third-Liquid Phase-Transfer Catalysis”, Journal of Molecular Catalysis. A, Chemical, 246 (2006) 255-262
[34]劉瑞祥, “有機化學”, 復文書局 (1996)
[35]吳國靜, “香料”, 財團法人徐氏基金會 (1991)
[36]陳岳鴻, 許延年, “有機化學” 東華書局 (1998)
[37]P.E. Dumas, “Boron Carbide as an Effective Firedel-Crafts-Type Catalyst”, U.S. Pat. Appl. Publ., (2006) 3
[38]S. Hosseini, Mona, Sharghi, and Hashem, “Zinc Oxide (ZnO) as a New, Highly Efficient, and Reusable Catalyst for Acylation of Alcohols, Phenols and Amines under Solvent Free Conditions”, Tetrahedron, 61 (2005) 10903-10907
[39]Tamaddon, Fatemeh, Amrollahi, A. Mohammad, Sharafat, and Leily, “Green Protocol for Chemoselective O-acylation in the Presence of Zinc Oxide as a Heterogeneous, Reusable and Eco-Friendly Catalyst.”, Tetrahedron Letters, 46 (2005) 7841-7844
[40]Chakraboti, K. Asit, S. L. Gulhane, R. Shicani, “Electrostatic Catalysis by Ionic Aggregates: Scope and Limitations of Mg(ClO4)2 as Acylation Catalyst.” Tetrahedron, 59 (2005) 0040
[41]M.B. Hogale, “New Method for Synthesis of Benzoate Esters.”, National Academy Science Letters, 13 (1990) 449-451
[42]楊寶旺, 田福助, “有機化學(上)”, 高立書局 (1992)
[43]許豪麟, “以固定化相間轉移觸媒催化苯甲酸鈉之酯化反應動力學研究”, 國立中興大學化工研究所碩士論文 (2003)[44]陶雨台, “表面物理化學”, 千華圖書出版事業有限公司 (1982)
[45]M. Drew, “Surfaces, Interfaces, and Colloids Principles and Applications” WILEY-VCH, New York (1999)
[46]張有義, 郭蘭生, “膠體及界面化學入門”, 高立書局 (1997)
[47]朱昶珊, “合成苯甲基苯基醚之固-液聚乙二醇及四級銨鹽相間轉移催化反應動力學研究”, 國立中興大學化工研究所碩士論文 (2001)[48]M.L. Wang and V. Rajendran, “Ultrasound Assisted Phase-Transfer Catalytic Epoxidation of 1,7-Octadiene - A Kinetic Study”, Ultrasound Sonochemistry, 14 (2007) 46-54