跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃金鎮
研究生(外文):Chin-Chen Huang
論文名稱:相間轉移觸媒合成苯甲酸酯類之反應動力學研究
論文名稱(外文):Study On the Kinetics of Synthesizing Benzoic Acid Esters Via Phase-Transfer Catalysis
指導教授:楊鴻銘楊鴻銘引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:237
中文關鍵詞:相間轉移觸媒第三液相固體觸媒液-液相苯甲醯化反應酯化反應苯甲酸苯酯苯甲酸4-乙醯基苯酯苯甲酸4-氯-3-甲基苯酯動力學
外文關鍵詞:Phase-transfer catalystthird-liquid phasetriphaseliquid-liquid phasebenzoylationesterificationphenyl benzoate4-acetylphenyl benzoate4-chloro-3-methylphenyl benzoatekinetics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本論文之研究目的在探討水相反應物苯環上取代基與不同操作變數對液-液、第三液相及固-液-液相間轉移催化合成苯甲酸酯類的影響,操作變數包括攪拌速率、觸媒添加量、水量效應、不同有機溶劑效應、溫度效應、無機鹽類效應、觸媒種類效應等,進而得到較適當的反應條件,並提出反應機制及其動力學模式。
第一部份分別以酚化鈉及4-氯-3-甲基酚化鈉與氯化苯甲醯在液-液相相間轉移催化合成苯甲酸苯酯與苯甲酸4-氯-3-甲基苯酯。苯甲酸苯酯方面:在反應過程中沒有觀察到觸媒中間體存在於有機溶劑正庚烷中。在二氯苯中,將觸媒量增加到初始使用量的20~30%左右,於不同攪拌速率下,觸媒中間體的濃度在反應20分鐘後就維持一定值。當添加過量的氫氧化鈉則會影響到觸媒中間體進入到有機相之量,當氫氧化鈉量大於0.025莫耳時,會使得觸媒中間體濃度降低。
在苯甲酸4-氯-3-甲基苯酯方面:苯甲醯化反應主要在有機相發生,在反應過程中大約有55~65%的觸媒以觸媒中間體(4-氯-3-甲基苯氧基化四丁基銨)方式存在有機溶劑氯苯中,而且觸媒中間體在反應6分鐘後就維持常數。加入過量的溴化鈉及氯化鈉到水相中,則會使有機相中的觸媒中間體增加,進而促使反應速率增加,但是加入碘化鈉則會毒害觸媒。
第二部分為4-乙醯基酚化鈉及4-氯-3-甲基酚化鈉與氯化苯甲醯以三液相相間轉移催化合成苯甲酸4-乙醯基苯酯與苯甲酸4-氯-3-甲基苯酯。在苯甲酸4-乙醯基苯酯方面:苯甲醯化反應發生在油/第三液相界面處,在第三液相催化反應速率受攪拌速率影響,在形成第三液相時,其反應在3分鐘、20℃及200rpm下,產率即可達到100%。當沒形成第三液相時,其反應變為液-液相,在第三液相產率為液-液相的25~28倍。第三液相中觸媒中間體的含量在1分鐘後就維持定值,佔總觸媒用量的50%。而此系統所使用的有機溶劑為第三丁基甲基醚,其為非極性有機溶劑,所以在有機相中觸媒中間體的含量很少,觸媒中間體隨著攪拌速率增加而減少,隨觸媒添加量增加而增加。
在苯甲酸4-氯-3-甲基苯酯方面:使用苯甲基三丁基銨為觸媒及添加氯化鈉,則可以形成第三液相。反應速率常數對轉速相當敏感。當反應溫度從15℃增加到30℃,在反應時間3分鐘其產率從27.1%增加到76.0%,這顯示第三液相相間轉移觸媒具有高催化活性。第三液相內觸媒中間體與其他成份在反應過程中可以被分析出來,包括水相反應物、有機相反應物、產物、觸媒中間體及Q+(觸媒陽離子)。在反應前第三液中的觸媒中間體佔初始觸媒量87.4%,但是中間體量隨著反應時間增加而減少,而第三液相裡觸媒中間體與觸媒的比值在反應時間2分鐘後維持定值。有機溶劑為正庚烷時,有機相裡沒有觸媒中間體存在,主要反應都在第三液相內進行。
第三部份在探討固定化觸媒催化酚化鈉與氯化苯甲醯進行酯化反應動力學,是以三級胺固定在高分子擔體上,結果顯示只要用少量觸媒(交聯度1.375% DVB, 40~80mesh, 三丁基胺, 含致孔劑)在25℃、300rpm條件下,反應不到一小時產率可達100%。在添加致孔劑(4-甲基2-戊醇)情況下反應性比沒添加致孔劑來的好,是因為加入致孔劑可以使固體觸媒的內部孔徑變大進而有利於反應物的質傳與內部擴散。而在固體觸媒上的觸媒中間體隨反應的變化量是可以被測量出的。在交聯度為1.38%DVB下,增加攪拌速率及減少觸媒粒徑可以增加反應速率,在三相反應中添加無機鹽類變數。
Abstract

In this dissertation, the purpose of this study is to explore the effects of operating factors and different substituted groups in the benzene ring of aqueous reactants on synthesizing benzoic acid esters via liquid-liquid, third-liquid and solid-liquid-liquid phases-transfer catalysis. The operating parameters, including agitation speeds, amounts of catalyst, volume of water, types of solvent, reaction temperature, types of inorganic salt and phase-transfer catalyst, were all performed to find the optimal reaction conditions. The reaction mechanism and kinetics were proposed.
The first part is to investigate the reactions of sodium phenoxide and sodium 4-chloro-3-methylphenoxide with benzoyl chloride to synthesize phenyl benzoate and 4-chloro-3-methylphenyl benzoate, respectively, by liquid-liquid phase-transfer catalysis. In phenyl benzoate system, the catalytic intermediate (ArOQ) was not observed in the organic phase during the reaction using heptane as the solvent; while in dichlorobenzene, its amount was about 20-30% of the initial usage of catalyst. The concentrations of ArOQ for different agitation speeds are near constant after 20 min of duration. Extra additions of NaOH also affected the overall reaction rate significantly due to that the extraction of ArOQ into the organic phase was influenced by hydroxide anion. The concentration of ArOQ decreased with increasing amount of NaOH at a usage of greater than 0.025mol.
In 4-chloro-3-methylphenyl benzoate system, the benzoylation reaction was occurred in the organic phase. About 0.55-0.65 fractions of the catalyst in chlorobenzene were in the form of catalytic intermediate tetrabutylammonium 4-chloro-3-methylphenoxide (ArOQ) during reaction, and are near constant after 6 min of induction period. Extra additions of NaCl and NaBr into the aqueous phase increased the concentration of ArOQ in the organic phase and then enhanced the overall reaction, while a poison effect was observed with extra addition of NaI.
The second part is to investigate the reactions of sodium 4-acetylphenoxide or sodium 4-chloro-3-methylphenoxide with benzoyl chloride to synthesize 4-acetylphenyl benzoate and 4-chloro-3-methylphenyl benzoate, respectively, via third-liquid phase-transfer catalysis. In 4-acetylphenyl benzoate system, the benzoylation reaction was occurred in the interface of the organic/third-liquid phases. The reaction rate was observed to be strongly dependent on agitation speeds in the third-phase catalytic reaction. By forming the third-liquid phase, the observed reaction can be greatly enhanced to give a product yield of 100% in a duration of 3 min at 20℃ and 200 rpm. If third-liquid phase was not formed in liquid-liquid system, the reaction rate is very slow and the product yield is only 2% in 3 min at 20℃. The reaction conducted in third-liquid phase-transfer catalytic system is faster than that in LLPTC system by 25-28 folds. The amount of catalytic intermediate (ROQ) in the third-liquid phase was about 50% of the catalyst initially added and kept about 30% of it after 1 min, and only small amounts of catalytic intermediate residing in the organic phase were observed during the reaction using methyl t-butyl ether as the solvent. The concentration of catalytic intermediate slightly decreased with increasing reaction time, while the molar ratio of ROQ to benzyl tri-n-butylammonium cation in the third-liquid phase kept almost constant after 1 min and increased with increasing agitation speeds.
In 4-chloro-3-methylphenyl benzoate system, the third-liquid phase can be prepared from benzyl tri-n-butylammonium bromide (QBr) reacted with sodium 4-chloro-3-methylphenoxide in the presence of NaCl. The observed reaction rate was strongly dependent on the agitation speeds. When the temperature rises to 30℃ from 15 ℃, the product yield in the organic phase increases to 76.0% from 27.1% in 3 min of reaction, showing a high catalytic efficiency by third-liquid phase-transfer catalysis. The catalytic intermediate (ROQ) was synthesized and the variations of the composition in the third-liquid phase were analyzed during the reaction, including aqueous reactant, organic reactant, product, catalytic intermediate and Q+ (cation of catalyst). The amount of ROQ in the third-liquid phase was about 87.4% of the initial catalyst and decreased with reaction time, and the molar ratio of ROQ to Q+ in the third-liquid phase kept almost constant after 2 min of reaction. Using n-heptane as the solvent, ROQ was not found in the organic phase; the main reaction conducted in the third-liquid phase.
The third part is to investigate the kinetics for esterification of sodium phenoxide with benzoyl chloride by triphase catalysis. The product yield was obtained 100% in 1 h of reaction using a small amount of catalyst which was functionalized with triakylamine to form the quaternary ammonium chloride (as p-Q+Cl-) on the surface of styrene/chloromethylstyrene-divinylbenzene copolymer prepared with or without 4-methyl-2-pentanol (4M2P) as the pore template. The catalysts prepared with 4M2P have a higher activity than without using 4M2P for the same %DVB and functional group, due to much larger pore-mouth on the outer surface of the catalyst. The amount of catalytic intermediate as p-Q+OPh- from the reaction of sodium phenoxide (PhONa) with the active center p-Q+Cl- within the catalyst was determined, showing a great increase during the reaction. The reaction rate increased with increasing agitation speed and decreasing mean particle sizes for 1.38% divinylbenzene (DVB) cross-linked. Extra additions of inorganic salts on the performance of triphase catalyst were also explored.
目 錄

中文摘要--------------------------------------------------i
英文摘要------------------------------------------------iii
誌謝-------------------------------------------------- vii
目錄-------------------------------------------------- viii
圖目錄 ----------------------------------------------- xi
表目錄------------------------------------------------ xx
符號說明-------------------------------------------- xxii
第一章 緒論 1
一、前言------------------------------------- 1
二、相間轉移觸媒之簡介----------------------- 1
三、相間轉移觸媒反應型態--------------------- 6
四、酯化反應的機制--------------------------- 16
五、研究目的及方法--------------------------- 20
(一) 研究目的-------------------------------- 20
(二) 研究方法-------------------------------- 22
第二章 實驗部份 26
一、實驗藥品--------------------------------- 26
二、分析儀器--------------------------------- 28
三、產物之合成------------------------------- 29
四、觸媒中間體之製備------------------------- 30
五、固定化觸媒之製備------------------------- 30
(一) 以懸浮聚合法合成高分子擔體-------------- 30
(二) 觸媒固定化實驗-------------------------- 32
(三) 三相觸媒中氯離子密度之測定(Volhard method) 32
六、校正曲線--------------------------------- 33
七、反應動力學實驗步驟----------------------- 40
(一) 四級鹽類陽離離子(Q+)濃度的分析方法------ 40
(二) 第三液相實驗步驟(苯甲酸4-乙醯基苯酯)---- 40
(三) 第三液相實驗步驟(苯甲酸4-氯-3-甲基苯酯)- 43
(四) 液-液相實驗步驟(苯甲酸苯酯)------------- 45
(五) 液-液相實驗步驟(苯甲酸4-氯-3-甲基苯酯)-- 46
(六) 固-液-液相實驗步驟---------------------- 46
第三章 以液-液相相間轉移觸媒合成苯甲酸酯類 48
一、前言------------------------------------- 48
二、反應機構及動力模式推導------------------- 49
三、結果與討論------------------------------- 55
(一) 不同水相反應物之水/油相界面張力探討- 55
(二) 轉速效應---------------------------- 60
(三) 水相反應物添加量效應-------------------- 72
(四) 觸媒添加量效應-------------------------- 78
(五) 不同鹽類之效應-------------------------- 81
(六) 不同種類相間轉移觸與反應溫度之效應------ 93
(七) 不同有機溶劑與溫度之效應---------------- 98
(八) 不同水量之效應-------------------------- 106
四、結論------------------------------------- 107
(一) 苯甲酸苯酯------------------------------ 107
(二) 苯甲酸4-氯-3-甲基苯酯------------------- 109
第四章應用第三液相相間轉移觸媒催化技術合成苯甲酸酯類 111
一、前言------------------------------------- 111
二、反應機構與動力學推導--------------------- 111
三、結果與討論------------------------------- 117
(一) 水相/第三液相與油相/第三液相之界面張力分析----- 117
(二) 液-液相催化反應與第三液相催化反應------- 119
(三) 攪拌速率效應---------------------------- 120
(四) 水相反應物添加量效應-------------------- 134
(五) 觸媒添加量效應-------------------------- 144
(六) 不同無機鹽類---------------------------- 155
(七) 不同溫度效應---------------------------- 161
四、結論------------------------------------- 166
(一) 苯甲酸4-乙醯基苯酯---------------------- 166
(二) 苯甲酸4-氯-3-甲基苯酯------------------- 167
第五章 固定化相間轉移觸媒催化酚化鈉鹽之苯甲醯化反應動力學 169
一、前言------------------------------------- 169
二、固-液-液相催化反應機制及反應動力模式----- 170
三、結果與討論------------------------------- 173
(一) 固體觸媒的物性分析---------------------- 173
(二) 攪拌速率效應---------------------------- 182
(三) 不同官能基之效應------------------------ 188
(四) 不同粒徑與交聯度的影響------------------ 192
(五) 水相反應物與觸媒添加量之影-------------- 197
(六) 無機鹽類添加效應------------------------ 200
(七) 不同溶劑效應---------------------------- 202
四、結論------------------------------------- 206
第六章 苯環上取代基的控制效應對相間轉移催化反應系統的影響 208
一、前言------------------------------------- 208
二、苯環上取代基的控制效應------------------- 208
三、不同相間轉移催化反應系統效應------------- 211
第七章 總結 214
一、液-液相相間轉移催化反應------------------ 214
(一) 苯甲酸苯酯------------------------------ 214
(二) 苯甲酸4-氯-3-甲基苯酯------------------- 215
二、第三液相相間轉移催化反應----------------- 216
(一) 苯甲酸4-乙醯基苯酯---------------------- 216
(二) 苯甲酸4-氯-3-甲基苯酯------------------- 217
三、固-液-液相相間轉移催化反應--------------- 218
四、未來展望--------------------------------- 219
參考文獻---------------------------------------------- 220
附錄-------------------------------------------------- 226
自述-------------------------------------------------- 236
論文發表---------------------------------------------- 236
參考文獻

[1]C.M. Starks, “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, Jourmal of American Chemisty Society, 93 (1971) 195-199
[2]J.C. Jarrouss, “The Influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chloride Derivatives.”, C.R. Heabd. Seances Acad. Sci., 232 (1951) 1424-1434
[3]S.L. Regen, “Triphase Catalyst”, Jourmal of American Chemisty Society, 97 (1975) 5956-5958
[4]D.N. Sanjeev and L.K. Doraiswamy, “Mathematical Modeling of Solid-Liquid Phase-Transfer Catalysis”, Chemical Engineering Science, 52 (1997) 4533-4546
[5]吳俊民, “應用固-液及液-液相相間轉移觸媒合成丙烯基苯基醚之醚化反應動力學研究”, 國立中興大學化工研究所碩士論文 (2000)
[6]趙承琛, “界面科學基礎”, 復文書局 (1985)
[7]L.S. Lee, and H.Y. Huang, “Liquid–liquid Equilibrium Behavior of Tetrabutylammonium Bromide, Benzene, and Water Mixture”, Fluid Phase Equilibria, 205 (2003) 133-147
[8] S.W. Park, T.Y. Kim, D.W. Park, and J.W. Lee, “Kinetics of Reaction of Benzyl Chloride with Sodium Acetate Using Tetrahexylammonium Chloride as A Phase-Transfer Catalyst”, Catalysis Today, 87 (2003) 179-186
[9]W.E. Kowtoniuk, M.E. Rueffer, D.K. MacFarland, “Synthesis And Competency of a Novel Dicationic Phase-Transfer Catalyst”, Tetrahedron: Asymmetry, 15 (2004) 151-154
[10]H.M. Yang, and C.L. Lin, “Phase-Transfer Catalyzed Benzylation of Sodium Benzoate Using Aliquat336 as Catalyst in Liquid–Liquid System”, Journal of Molecular Catalysis A: Chemical, 206 (2003) 67-76
[11]M.L. Wang, Z.F. Lee, and F.S. Wang, “Synthesis of Novel Multi-Site Phase-Transfer Catalyst and Its Application in The Reaction of 4,4′-Bis(chloromethyl)-1,1′-biphenyl with 1-Butanol”, Journal of Molecular Catalysis A: Chemical, 229 (2005) 259-269
[12]M.L. Wang, and Z.F. Lee, “Reaction of 4,4′-Bis(chloromethyl)-1,1′-biphenyl and Phenol in Two-Phase Medium Via Phase-Transfer Catalysis”, Journal of Molecular Catalysis. A, Chemical, 264 (2007) 119-127
[13]C.M. Starks, C.L. Loitta, and M. Halpern, “Phase Transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall”, New York (1994)
[14]M. Fedorynski, K. Wojciechowski, Z. Matacz, and M. Makosza, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems”, J. Org. Chem., 43 (1978) 4682
[15]S.D. Naik, and L.K. Doraiswamy, “Mathematical Modeling of Solid-Liquid Phase-Transfer Catalysis”, Chemcial Engineering Science, 52 (1997) 4533-4546
[16]H.M. Yang, P.I. Wu, and C.M. Li, “Etherification of Halo-Ester by Phase-Transfer Catalysis in Solid-Liquid System”, Applied Catalysis A: General, 193 (2000) 129-137
[17]H.M. Yang, and C. M. Wu, “Phase-Transfer Catalyzed Allylation of Sodium Phenoxide in a Solid-Liquid System”, Journal of Molecular Catalysis. A, Chemical, 153 (2000) 83-91
[18]H.M. Yang, and H.C. Liu, “Kinetics for Synthesizing Benzyl Salicylate Via Solid-Liquid Phase Catalysis”, Applied Catalysis A: General, 258 (2004) 25-31
[19]P. Tundo, and P. Venturello, “Synthesis Catalytic Activity and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts”, Jourmal of American Chemisty Society, 101 (1979) 6606-6613
[20]T. Battal, C. Siswant, and J.F. Rathman, “Synthesis of Alkylphenyl Ethers in Aqueous Surfactant Solution by Micellar Phase-transfer Catalysis. 2. Two-Phase System”, Langmuir, 13 (1977) 6053
[21]B. Thierry, J.C. Plaquevent, and D. Chard, “New Polymer-Supported Chiral Phase-Transfer Catalysis in the Asymmetric Synthesis of α-Amino Acids: the Role of a Spacer.” Tetrahedron: Asymmetry, 12 (2001) 983-986
[22]H.S. Wu, and C.S. Lee, Catalytic Activity of Quaternary Ammonium Poly(methylstryene-co-stryene)Resin in an Organic/Alkaline solution”, Journal of Catalysis, 199 (2001) 217-223
[23]H.S. Wu, and C.L. Lee, “Mechanism and NaOH Effect of Polymer-Supported Catalyst: Phosphazene Reaction”, Chemical Engineering Journal, 90 (2002) 241-251
[24]L. Li, J. Shi, J. Yan, H. Chen, and X. Zhao, “SBA-15 Supported Quaternary Salts: an Efficient Heterogeneous Phase-Transfer Catalyst” Journal of Molecular Catalysis. A, Chemical, 209 (2004) 227-230
[25]S. Baj, A. Siewniak, and B. Socha, “Synthesis of Dialkyl Peroxides in the Presence of Polymer-Supported Phase-Transfer Catalysts” Applied Catalysis A: General, 309 (2006) 85-90
[26]R. Neumann, and Y. Sasson, “Mechanism of Base Catalyzed Reaction in Phase-Transfer Systems with Poly(ethylene glycols) as Catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451
[27]D.H. Wang, and H.S. Weng, “Preliminary Study on the Role Played by the Third Liquid Phase in Phase Transfer Catalysis” Chemical Engineering Science, 43 (1988) 2019-2024
[28]D.H. Wang, and H.S. Weng, “Solvent and Salt Effect on the Formation of Third Liquid Phase and the Reaction Mechanisms in the Phase Transfer Catalysis System Reaction Between n-Butyl Bromide and Sodium Phenolate”, Chemical Engineering Science, Vol. 50, pp. 3477-3486 (1995)
[29]T. Ido, T. Yamamoto, G. Jin, and S. Goto, “Third-liquid Catalytic Activity of Halogen Exchange Reaction in Phase Transfer Catalytic System”, Chemical Engineering Science, 52 (1997) 3511-3520
[30]H.S. Weng, S.M. Kao, and H.C. Hsiao, “Synthesis of n-Butyl Phenyl Ether by Tri-Liquid-Phase Catalysis Using Poly(ethylene glycols)-600 as a Catalyst. 1. Analysis of Factor Affecting the Formation of a Third Liquid Phase”, Industrial and Engineering Chemistry Reserach, 39 (2000) 2772-2778
[31]S. Goto, T. Ido, and G. Jin, “Effect of Third-Phase Properties on Benzyl-n-butyl Ether Synthesis in Phase Transfer Catalytic System”, Catalysis Today, 64 (2001) 279-287
[32]P.J. Lin, and H.M. Yang, “Kinetics for Etherification of Sodium o-nitrophenoxide Via Third-Liquid Phase-Transfer Catalysis”, Journal of Molecular Catalysis. A, Chemical, 235 (2005) 293-301
[33]H.M. Yang, and C.C. Li, “Kinetics for Synthesizing Benzyl Salicylate by Third-Liquid Phase-Transfer Catalysis”, Journal of Molecular Catalysis. A, Chemical, 246 (2006) 255-262
[34]劉瑞祥, “有機化學”, 復文書局 (1996)
[35]吳國靜, “香料”, 財團法人徐氏基金會 (1991)
[36]陳岳鴻, 許延年, “有機化學” 東華書局 (1998)
[37]P.E. Dumas, “Boron Carbide as an Effective Firedel-Crafts-Type Catalyst”, U.S. Pat. Appl. Publ., (2006) 3
[38]S. Hosseini, Mona, Sharghi, and Hashem, “Zinc Oxide (ZnO) as a New, Highly Efficient, and Reusable Catalyst for Acylation of Alcohols, Phenols and Amines under Solvent Free Conditions”, Tetrahedron, 61 (2005) 10903-10907
[39]Tamaddon, Fatemeh, Amrollahi, A. Mohammad, Sharafat, and Leily, “Green Protocol for Chemoselective O-acylation in the Presence of Zinc Oxide as a Heterogeneous, Reusable and Eco-Friendly Catalyst.”, Tetrahedron Letters, 46 (2005) 7841-7844
[40]Chakraboti, K. Asit, S. L. Gulhane, R. Shicani, “Electrostatic Catalysis by Ionic Aggregates: Scope and Limitations of Mg(ClO4)2 as Acylation Catalyst.” Tetrahedron, 59 (2005) 0040
[41]M.B. Hogale, “New Method for Synthesis of Benzoate Esters.”, National Academy Science Letters, 13 (1990) 449-451
[42]楊寶旺, 田福助, “有機化學(上)”, 高立書局 (1992)
[43]許豪麟, “以固定化相間轉移觸媒催化苯甲酸鈉之酯化反應動力學研究”, 國立中興大學化工研究所碩士論文 (2003)
[44]陶雨台, “表面物理化學”, 千華圖書出版事業有限公司 (1982)
[45]M. Drew, “Surfaces, Interfaces, and Colloids Principles and Applications” WILEY-VCH, New York (1999)
[46]張有義, 郭蘭生, “膠體及界面化學入門”, 高立書局 (1997)
[47]朱昶珊, “合成苯甲基苯基醚之固-液聚乙二醇及四級銨鹽相間轉移催化反應動力學研究”, 國立中興大學化工研究所碩士論文 (2001)
[48]M.L. Wang and V. Rajendran, “Ultrasound Assisted Phase-Transfer Catalytic Epoxidation of 1,7-Octadiene - A Kinetic Study”, Ultrasound Sonochemistry, 14 (2007) 46-54
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top