跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林凱鴻
研究生(外文):Kai-Hung Lin
論文名稱:奈米銀粒修飾型表面增強紅外光銅離子感測器之研製與應用
論文名稱(外文):Silver Nanoparticles-Modified Infrared Chemical Sensor for Selective Detection of Copper Ions in Aqueous Solution Utilizing the Surface Enhancement Effect
指導教授:楊吉斯
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:69
中文關鍵詞:離子感測器表面增強紅外光鍺晶體
外文關鍵詞:IR sensorsp-mercaptopyridinesurface enhancement effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究著重在兩大方向,其一是開發簡易之置換法製備紅外光表面增強效應基材,以克服目前蒸鍍製備法之缺點,其二是進一步應用表面增強紅外光法開發出高感度之紅外光離子感測器。研究中以鍺晶體做為感測元件,經與硝酸銀作用後可以在晶體表面形成約100奈米直徑之奈米銀粒,具有極佳之表面訊號增強效應,其增強倍數約50左右。為進一步開發紅外光離子感測器,研究中透過化學吸附方式將p-Mercaptopyridine(pMP)修飾於製備之奈米銀上,當pMP與待測金屬離子螯合後便會造成訊號增強吸收峰位移的行為,此位移訊號便可以用於金屬離子定量分析。因pMP為單層修飾,感應速度極快,又因pMP之紅外吸收峰受奈米銀粒增強,位移訊號亦相對提升,因此建立之感測器亦具高靈敏度。為瞭解此種感測法之特性與最佳化感測條件,研究中舉凡酸鹼值之影響、感測之選擇性、感測範圍、感測器穩定性等皆詳加探討。結果顯示,感測器在酸性下穩定性佳,感測速度快,約1分鐘達飽和訊號,具重複使用性,因感測行為屬表面作用因此標準曲線之線性區較短,僅能在10 μM內,但偵測極限可低於0.2 μM。
Based on the effect of surface enhancement, an evanescent wave infrared (IR) sensor was developed and applied in detection of copper ions in aqueous solution. To facilitate the application of surface enhancement effect, IR sensing element of germanium (Ge) was first treated with silver nanoparticles (AgNPs) through an electroless displacement method. With proper reaction conditions, a thin layer of silver nanoparticles in diameter around 100 nm was successfully prepared directly on the sensing element. By probing with organic molecules on the prepared AgNPs/Ge substrates, an enhancement factor of ca. 50 was observed.
Due to the lacking of vibration energy of copper ions, the AgNPs modified IR sensing element was further treated with a thin layer of chemisorbed p-mercaptopyridine (pMP) to trigger the analytical signals through a band-shifting technique. pMP can interact selectively with copper ions and consequence, its IR absorption bands were shifted to lower or higher wavenumbers depending on the weaken or strengthen the chemical bonds of pMP after chelating with copper ions. Hence, derivative-shapes of absorption bands were observed and can be used for quantitative purpose. The durability of the developed IR sensor was studied by experiencing the prepared sensor in aqueous solution with different pHs. Results indicated that the prepared sensor exhibit different stabilities in different pHs and was not workable in basic solutions. To characterize the IR sensor, several parameters in quantitative analysis were examined including the influence of solution pH, the effect of interference species, the speed in detection, the detection limit and linear range in detection. Results indicated that the prepared IR senors were highly selective for the detection of copper ions. Meanwhile, the detection speed was fast and optimal signals were obtained within few seconds. Based on three times of noise level, the obtained detection limit for copper ions was ca. 0.2 μM. The linear range in detection was short and up to 10 μM only.
謝誌……………………………………………………………………..Ⅰ
中文摘要………………………………………………………..………Ⅱ
英文摘要……………………………………………………………..…Ⅲ
總目錄…………………………………………………………….….…Ⅴ
圖表目錄…………………………………………………………......…Ⅷ

第一章 序論
1-1 前言………………………………………………………………….1
1-2 銅離子偵測動機…………………………………………………….1
1-3 銅離子檢測法之文獻回顧………………………………………….2
1-4 表面增強效應的原理與現象…………………………………….…4
1-5 表面訊號增強效應影響因子文獻回顧…………………………….8
1-5-1 金屬種類、大小的影響………………………………………...8
1-5-2 基材種類的探討……………………………………………….8
1-5-3 表面訊號增強效應製作方法回顧…………………………….9
1-6 訊號增強效應型紅外光銅離子感測器製備與感測原理介紹…...13
1-6-1 減弱式全反射原理介紹……………………………………...13
1-6-2 無電極置換法置備ATR奈米銀修飾元件…………………...15
1-6-3 pMP修飾奈米銀之製備與檢測原理………………………….15
1-7 結論………………………………………………………………...19
第二章 實驗方法與步驟
2-1 儀器藥品部分……………………………………………………...20
2-1-1 實驗儀器……………………………………………………...20
2-1-2 實驗藥品……………………………………………………...20
2-1-3 實驗裝置……………………………………………………...21
2-2 感測層製備的方法………………………………………………...21
2-3 檢測金屬離子步驟………………………………………………...22
第三章 感測層之基本性質與檢測金屬離子之探討
3-1 修飾分子pMP之基本性質探討.......................................................25
3-2 金屬粒子表面型態與修飾pMP之再現性探討…………………...29
3-3 pMP修飾層之基本性質討論………………………………………34
3-4 感測層穩定性探討...........................................................................37
3-4-1 水穩定性的探討……………………………………………...37
3-4-2 感測層在不同pH值下的穩定性……………………………...37
3-4-3 乾燥時間對穩定性之影響…………………………………...38
3-5 覆膜量厚度探討...............................................................................42
3-6 基本pMP修飾之銅離子感測性探討……………………………...44
3-7 樣品酸鹼值對訊號的影響...............................................................48
3-8 選擇性之探討...................................................................................52
3-9 干擾離子的探討...............................................................................52
3-10 濃度曲線的建立.............................................................................56
3-11 感測器再生.....................................................................................59
3-12 結論………………………………………………………………61
參考文獻………………………………………………………………..62

圖表目錄
表目錄
【表3-1】 pMP在不同pH值下吸收位置與振動模式..........................28
【表3-2】 干擾離子效應........................................................................55
圖目錄
【圖1-1】 表面增強紅外光與表面選擇律示意圖..................................7
【圖1-2】 無電極鍍法流程示意圖........................................................12
【圗1-3】 減弱式全反射示意圖............................................................14
【圖1-4】 感測層偵測示意圖................................................................17
【圖1-5】 表面增強吸收峰與金屬螯合前後光譜位移示意圖............18
【圖2-1】 實驗裝置................................................................................23
【圖2-2】 結合ATR檢測金屬離子的示意圖........................................24
【圖3-1】 pMP在不同pH值下的穿透光譜圖......................................26
【圖3-2】 pMP在不同pH值下的穿透光譜圖(放大)………………...27
【圗3-3】 基材於不同時間浸泡後之光譜圖........................................31
【圗3-4】基材於不同時間浸泡後之穿透率.........................................32
【圖3-5】 奈米銀粒SEM圖...................................................................33
【圖3-6】 pMP在不同pH環境下之表面增強光譜圖..........................35
【圖3-7】 1612 cm-1與1571 cm-1的相對變動模式……..…………….36
【圖3-8】 水穩定之時間圖....................................................................39
【圖3-9】 感測層在不同pH環境下的穩定表現..................................40
【圖3-10】 乾燥時間後於浸泡水1小時取出乾燥的殘留訊號圖.......41
【圖3-11】 不同覆膜量之pMP表面增強紅外光訊號圖……………..43
【圖3-12】 檢測光譜圖..........................................................................45
【圖3-13】 pMP與金屬螯合後之變動光譜圖......................................46
【圖3-14】 位移峰的吸收時間與訊號關係圖......................................47
【圖3-15】樣品酸鹼值對偵測0.1 mM銅離子溶液訊號之影響...........49
【圖3-16】 pMP在不同pH值的水溶液下的共振結構與其pKa值....50
【圖3-17】不同pH值環境下測取0.1 mM的銅離子溶液之光譜圖.....51
【圖3-18】 感測不同金屬之變動光譜圖..............................................54
【圖3-19】 濃度曲線圖..........................................................................57
【圖3-20】 偵測時間與不同濃度之訊號關係圖..................................58
【圖3-21】 感測器檢測金屬之再生探討..............................................60
1.Moore, J., Inorganiccontaminants of surface water, Springer-Verlag:New York, 1991
2.Carson, B., Ellis, H., McCann, J., Toxicology and biological monitoring of metals in humans, Lewis Publishers:Chelsea, MI, 1987.
3.Isilark, I., Asan, A., Andac, M., “Spectrophotometric Determination of Copper(II) at Low mg/L Levels Using Cation-Exchange Microcolumn in Flow-Injection”, Talanta 1999, 48, 219-224.
4.Torto, N., Mwatseteze, J., Sawula, G., “A Study of Mcrodialysis Sampling of Metal Ions”, Anal. Clim. Acta. 2002, 456, 253-261.
5.Tseng, W. C., Sun, Y. C., Lee, C. F., Chen, B. H., Yang, M. H., Huang, Y. L., “On-line Microdialysis Sampling Coupled with Flame Atomic Absorption Spectrometry for Continuous in Vivo Monitoring of Diffusible Magnesium in The Blood of Living Animals”, Talanta 2005, 66, 740-745.
6.Johnson, A. M., Holcombe, J. A., “Poly(L-cysteine) as an Electrochemically Modifiable Ligand for Trace Metal Chelation”, Anal. Chem. 2005, 77, 30-35.
7.Yang, W. R., Jaramillo, D., Gooding, J. J., “Sub-ppt Detection Limits for Copper Ions with Gly-Gly-His Modified Electrodes”, Chem. Commun. 2001, 19, 1982-1983.
8.Geary, D. C., Zudans, I., Goponenko, V. A., Asher, A. S., Weber, G. S.,“Electrochemical Investigation of Pb2+ Binding and Transport Through a Polymerized Crystalline Colloidal Array Hydrogel Containing Benzo-18-crown-6”, Anal. Chem. 2005, 77, 185-192.
9.Skoog, D. A., Holler, F. J., Nieman, T. A., Principle of Instrumental Analysis. Saunders College, Fort Worth, 1992.
10.Shimizu, Y., Izumi, S., Saito, Y., Yamaoka, H., “Ethylenediamine Tetraacetic Acid Modification of Crosslinked Chitosan Designed for a Novel Metal-Ion Adsorbent”, J. Appl. Polym. Sci. 1992, 92, 2758-2764.
11.Endo, M., Suauki, K., Abe, S., “Novel Preconcentration Technique for Trace Metal Ions by Aggregate Film Formation Spectrophotometric Determination of Copper(II)”, Anal. Chim. Acta. 1998, 364, 13-17.
12.Zheng, Y., Huo, Q., Kele, P., Andreopoulos, M. F., Pham, M. Si., Leblanc, M. R., ‘‘A New Fluorescent Chemosensor for Copper Ions Based on Tripeptide Glycyl-Histidyl-Lysine (GHK)”, Org. Lett. 2001, 3, 3277-3280.
13.Happel, O., Seubert, A., “Characterization of Stable Aluminium-citrate Species as Reference Substances for Aluminium Speciation by Ion Chromatography”, J. Chromatogr. A 2006, 1108, 68-75.
14.Huang, G. G., Yang, J., “Selective Detection of Copper Ions in Aqueous Solution Based on an Evanescent Wave Infrared Absorption Spectroscopic Method”, Anal. Chem. 2003, 75, 2262-2269.
15.Harstein, A., Kirtley J. R., Tsang, J. C. “Enhancement of the infrared Absorption from Monolayers with Thin Metal Overlayers”, Phys. Rev. Lett. 1980, 45,201-204.
16.Osawa, M., Ikeda, M. “Surface-Enhanced Infrared Absorptlon of p -Nltrobenzolc Acid Deposited on Silver Island Fllms: Contrlbutlons of Electromagnetic and Chemical Mechanisms”, J. Phys. Chem. 1991, 95, 9914-9919.
17.Nishikawa, Y., Ujiwara, K. Ataka, K-I., Osawa, M., “Surface-Enhanced Infrared External Reflection Spectroscopy at Low Reflective Surfaces and Its Application to Surface Analysis of Semiconductors, Glasses, and Polymers”, Anal. Chem. 1993, 65, 556-562.
18.Zhang, Z., Imae1, T., “Study of Surface-Enhanced Infrared Spectroscopy1. Dependence of the Enhancement on Thickness of Metal Island Films and Structure of Chemisorbed Molecules”, J. Colloid Interf. Sci. 2001, 233, 99-106.
19.Sanchez-Cortes, S., Domingo, C., Garcı´a-Ramos, J. V., Azna´rez, J.A., “Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films”, Langmuir 2001, 17, 1157-1162.
20.Heaps, D. A., Griffiths, P. R., “Band Shapes in the Infrared Spectra of Thin Organic Films on Metal Nanoparticles”, Vib. Spectrosc. 2006, 42, 45-50.
21.Fan, J., Trenary, M., “Symmetry and the Surface Infrared Selection Rule for the Determination of the Structure of Molecules on Metal Surfaces”, Langmuir 1994, 10, 3649-3657.
22.Wan, L. J., Terashima, M., Noda, H., Osawa, M., “Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111)”, J. Phys. Chem. B 2000, 104, 3563-3569.
23.Granqvist, C. G., Hunderi, O., “Optical Properties of Ag-SiO2 Cermit Films : A Comparison of Effective-medium Theories”, Phys. Rev. B 1978, 18, 2897-2906.
24.Nishika, Y.; Fujiwara, K.; Shima, T. “A Study on the Qualitative and Quantitative Analysis of Nanogram Samples by Transmission Infrared Spectroscopy with the Use of Silver Island Films”, Appl. Spectrosc. 1991, 45, 747-751.
25.Nishika, Y.; Ito, Y.; Fujiwara, K.; Shima, T. “Improvement of the Limiting Thickness of the Measurable Surface Layer on Polymer Films Using Fourier Transform Infrared Attenuated Total Reflection Spectroscopy with the Use of Silver Island Films”, Appl. Spectrosc. 1991, 45, 752-755.
26.Heaps, D. A., Griffiths, P. R., “Effect of Molecular Spacers on Surface-Enhanced Attenuated Total Reflection Infrared Spectra of Bulk Liquids”, Vib. Spectrosc. 2006, 42, 221-224.
27.Heaps, D. A., Griffiths, P. R., “Band Shapes in The Infrared Spectra of Thin Organic Rilms on Metal Nanoparticles”, Vib. Spectrosc. 2006, 42, 45–50.
28.Osawa, M., Ikeda, M. “Surface-Enhanced Infrared Absorptlon of p -Nltrobenzolc Acid Deposited on Silver Island Fllms: Contrlbutlons of Electromagnetic and Chemical Mechanisms”, J. Phys. Chem. 1991, 95, 9914-9919.
29.Merklin, G. T., Griffiths, P. R. “Influence of Chemical Interactions on the Surface-Enhanced Infrared Absorption Spectrometry of Nitrophenols on Copper and Silver Films”, Langmuir 1997, 13, 6159-6163.
30.Badilescu, S., Ashrit, P. V., Truong, V. V., “Enhanced Infrared Attenuated-Total-Reflection Spectra of p-nitrobenzoic Acid with Ag Films”, Appl. Phys. Lett. 1988, 52, 1551-1553.
31.Osawa, M.; Ataka, K.-I.; Yoshii, K.; Nishikawa, Y. “Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles”, Appl. Spectrosc. 1993, 47, 1497-1502.
32.Kellner, R., Mizaikoff, B., Jakusch, M., Wanzenbock, H. D.,Weissenbacher, N. “Surface-Enhanced Vibrational Spectroscopy: A New Tool in Chemical IR Sensing”, Appl. Spectrosc. 1997, 51, 495-503.
33.Geng, S., Friedrich, J., Gähde, J., Guo, L. “Surface-Enhanced Infrared Absorption (SEIRA) and Its Use in Analysis of Plasma-Modified Surface”, J. Appl. Polym. Sci. 1999,71, 1231-1237.
34.Tanaka, T., Nakano, T., Kurihara, I., Mizuike, A., “Microscale Ion Exchange Separation of Traces of Manganese in Niobium and Tantalum for Graphite-Furnace Atomic Absorption Spectrometry”, Anal. Sci. 1991, 7, 503-506.
35.Merklin, G. T., Griffiths, P. R., “Effect of Microscopic Surface Roughness in Surface-Enhanced Infrared Absorption Spectrometry”, J. Phys. Chem. B 1997, 101, 5810-5813.
36.Han, H. S., Han, S. W., Joo, S. W., Kim, K., “Adsorption of 1,4-Phenylene Diisocyanide on Silver Investigated by Infrared and Raman Spectroscopy”, Langmuir 1999, 15, 6868-6874.
37.Wanzenböck, H. D., Mizaikoff, B., Weissenbacher, N., Kellner, R., “Multiple Internal Reflection in Surface Enhanced Infrared Absorption Spectroscopy (SEIRA) and Its Significance for Various Analyte Groups”, J. Mol. Struct. 1997, 410, 535-538.
38.Zhang, J., Zhao, J., He, H., Zhang, H., Li, H., Liu, Z. “Studies on the Surface-Enhanced Infrared Spectroscopy of Langmuir-Blodgett Monolayers of Azobenzene Carboxylic Acid on Silver Island Films”, Langmuir 1998, 14, 5521-5525.
39.Makino, N., Mukai, K., Kataoka, Y. “Characterization of Surface Contaminants by a Silver Film-Enhanced IR-Johnson Method”, Appl. Spectrosc. 1997, 51, 1460-1464.
40.Seelenbinder, J. A., Brown, C. W., Pivarnik, P., Rand, A. G. “Colloidal Gold Filtrates as Metal Substrates for Surface-Enhanced Infrared Absorption Spectroscopy”, Anal. Chem. 1999, 71, 1963-1966.
41.Badilescu, S., Ashirt, P. V., Truong, V.-V., Badilescu, I. I. “Enhanced Infrared ATR Spectra of o-, m-, and p-Nitrobenzoic Acid with Ag Films”, Appl. Spectrosc. 1989, 43, 549-552.
42.Sato, S.; Suzuki, T. “Study of Surface-Enhanced IR Absorption Spectroscopy Over Evaporated Au Films in an Ultrahigh Vacuum System”, Appl. Spectrosc. 1997, 51, 1170-1175.
43.Imae, T., Torii, H., “In Situ Investigation of Molecular Adsorption on Au Surface by Surface-Enhanced Infrared Absorption Spectroscopy”, J. Phys. Chem. B 2000, 104, 9218-9224.
44.Brown, C. W., Li, Y., Seelenbinder, J. A., Pivarnik, P., Rand, A. G., Letcher, S. V., Gregory, O. J., Platek, M. J. “Immunoassays Based on Surface-Enhanced Infrared Absorption Spectroscopy”, Anal. Chem. 1998, 70, 2991-2996.
45.Nakao, Y., Yamada, H. “Enhanced infrared ATR spectra of surface layers using metal films”, Surf. Sci. 1986, 176, 578-592.
46.Bjerke, A. E., Griffiths, P. R., Theiss, W., “Surface-Enhanced Infrared Absorption of CO on Platinized Platinum”, Anal. Chem. 1999, 71, 1967-1974.
47.Ishida, K. P., Griffiths, P. R. “Theoretical and Experimental Investigation of Internal Reflection at Thin Copper Films Exposed to Aqueous Solutions”, Anal. Chem. 1994, 66, 522-530.
48.Aroca, R., Price, B., “A New Surface for Surface-Enhanced Infrared Spectroscopy: Tin Island Films”, J. Phys. Chem. B 1997, 101, 6537-6540.
49.Nishikawa, Y., Fujiwara, M., Ataka, K. I., Osawa, M., “Surface-Enhanced Infrared External Reflection Spectroscopy at Low Reflective Surfaces and Its Application to Surface Analysis of Semiconductors, Glasses, and Polymers”, Anal. Chem. 1993, 65, 556-562.
50.Li, G., Morita, S., Ye, S., Tanaka, M., Osawa, M., “Quartz Crystal Microbalance and Infrared Reflection Absorption Spectroscopy Characterization of Bisphenol A Absorption in the Poly(acrylate) Thin Films”, Anal. Chem. 2004, 76, 788-795.
51.Cardini, G., Maurizio M. M., Schettino. V., “SERS and DFT Study on 4-Methylpyridine Adsorbed on Silver Colloids and Electrodes”, J. Phys. Chem. B 2004, 108, 17007-17011.
52.Miyashita, T., Manabe, T., “Infrared Optical Fibers”, IEEE J. Quantum Elect. 1982, 18, 1432-1450.
53.Ataka, K., Heberle, J., “Electrochemically Induced Surface-Enhanced Infrared Difference Absorption (SEIDA) Spectroscopy of a Protein Monolayer”, J. Am. Chem. Soc. 2003, 125, 4986-4987.
54.Yang, J., Chen, S. H., “Development of Electrode-less Plating Method for Silver Film Preparations for Surface-Enhanced Infrared Absorption Measurements”, Appl. Spectrosc. 2001, 55, 399-406.
55.Sato, Y., Noda, H., Mizutani, F., Yamakata, A., Osawa, M., “In Situ Surface-Enhanced Infrared Study of Hydrogen Bond Pairing of Complementary Nucleic Acid Bases at the Electrochemical Interface”, Anal. Chem. 2004, 76, 5564-5569.
56.Miyake, H., Hosono, E., Osawa M., Okada T., “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes”, Chem. Phys. Lett. 2006, 428, 451–456.
57.Imae, T., Torii, H., “In Situ Investigation of Molecular Adsorption on Au Surface by Surface-Enhanced Infrared Absorption Spectroscopy”, J. Phys. Chem. B 2000, 104, 9218-9224.
58.Nakamura, R., Sato S., “Surface-Enhanced IR Absorption of Pt and Its Application to In Situ Analysis of Surface Species”, Langmuir 2002, 18, 4433-4436.
59.Han, H. S., Han, S. W., Joo, S. W.,Kim, K. “Adsorption of 1,4-Phenylene Diisocyanide on Silver Investigated by Infrared and Raman Spectroscopy”, Langmuir 1999, 15, 6868-6874.
60.Porter, L. A., Jr., Choi, H. C., Ribbe, A. E., Buriak, J. M., “Controlled Electroless Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces”, Nano. Lett. 2002, 2, 1067-1071.
61.Zangmeister, C. D., van Zee, R. D., “Electroless Deposition of Copper onto 4-Mercaptobenzoic Acid Self-Assembled on Gold”, Langmuir 2003, 19, 8065-8068.
62.Qu, L., Dai, L., “Substrate-Enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes”, J. Am. Chem. Soc. 2005, 127, 10806-10807.
63.Yang, J., Griffiths, P. R., “Preparation and Characterization by surface-enhanced infrared absorption spectroscopy of silver nanoparticles formed on germanium substrates by electroless displacement”, Anal. Bioanal. Chem. 2007, 388, 109–119.
64.Simhony, S., Katzir, A., Kosower, E. M., “Fourier Transform Infrared Spectra of Organic Compounds in Solution and as Thin Layers Obtained by Using an Attenuated Total Internal Reflectance Fiber-optic Cell”, Anal. Chem. 1988, 60, 1908-1910.
65.Gobel, R., Krska, R., Kellner, R., Kastner, J., Lambercht A., Tacke, M., Katzir, A., “Enhancing the Sensitivity of Chemical Sensors for Chlorinated Hydrocarbons in Water by the Use of Tapered Silver Halide Fibers and Tunable Diode Lasers”, Appl. Spectrosc. 1995, 49, 1174-1177.
66.Paul P. H., Kychakoff, G., “Fiber-optic evanescent field absorption sensor”, Appl. Phys. Lett. 1987, 51, 12-14.
67.Newby, K., Reichert, W. M., Andrade, J. D., Benner, R. E., “Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber”, Appl Opt. 1984, 23, 1812-1815.
68.Messica, A., Greenstein, A., Katzir, A., Schiesel, U., Tacke, M., “Fiber-optic evanescent wave sensor for gas detection”, Opt. Lett. 1994, 19, 1167-1169.
69.Giulianli, J. F., Wohltjen, H., Jarvis, N. L., “Reversible optical waveguide sensor for ammonia vapors”, Opt. Lett. 1983, 8, 54-56.
70.Vo-Dinh, T., Tromberg, B. J., Griffin, G. D., Ambrose, K. R., Sepaniak, M. J., Grdednhire, E. M., “Antibody-Based Fiberoptics Biosensor for the Carcinogen Benzo(a)pyrene”, Appl. Spectrosc. 1987, 41, 735-738.
71.Simhi, R., Gotshal, Y., Bunimovich, D., Sela, E., A., Katzir, A., “Fiber-optic Evanescent-wave spectroscopy for fast Multicomponent Analysis of Human Blood”, Appl. Opt. 1996, 35, 3421-3425.
72.Sternitzke, K., McCreery, R. L., Bruntlett, C. S., Kissinger, P. T., “In Situ Laser Activation of Glassy Carbon Electrochemical Detectors for Liquid Chromatography: Demonstration of Improved Reversibility and Detection Limits”, Anal. Chem. 1989, 61, 1989-1993.
73.Janatsch, G., Kruse-Jarres, J. D., Marbach, R., Heuse, H. M., “Multivariate Calibration for Assays in Clinical Chemistry Using Attenuated Total Reflection Infrared Spectra of Human Blood Plasma”, Anal. Chem. 1989, 61, 2016-2023.
74.Margalit, E., Dodiuk, H., Kosower, E. M., Katzir, M. A., Proc. Soc. Photo-Opt. Instrum. Eng. 1989, 1048, 145-152.
75.Jung, H. S., Kim, K., Kim, M. S., ”Raman Spectroscopic Investigation of The Adsorption of 4-mercaptopyridine on a Silver-sol Surface”, J. Mol. Struct. 1997, 407, 139-147.
76.Yu, H. Z., Xia, N., Liu, Z, F., “SERS Titration of 4-Mercaptopyridine Self-Assembled Monolayers at Aqueous Buffer/Gold Interfaces”, Anal. Chem. 1999, 71, 1354-1358.
77.Hu, J., Zhao, B., Xu, W., Li, B., Fan, Y., “Surface-enhanced Raman Spectroscopy Study on The Structure Changes of 4-mercaptopyridine Adsorbed on Silver Substrates and Silver Colloids”, Spectrochim. Acta A 2002, 58, 2827-2834.
78.Wang, Z., Rothberg, L. J., “Origins of Blinking in Single-Molecule Raman Spectroscopy”, J. Phys. Chem. B 2005, 109, 3387-3391.
79.Skoog, D. A., West, D. M., Holler, F. J., Fundamentals of Analytical Chemistry, Saunders College Pub, Fort Worth, 1996.
80.Sakamoto, H., Takagaki, H., Nakamura, M., Kimura, K., “Photoresponsive Liquid Membrane Transport of Alkali Metal Ions Using Crowned Spirobenzopyrans”, Anal. Chem. 2005, 77, 1999-2006.
81.Zeng, Y. N., Zeng, N., Osborne, P. G., Li, Y. Z., Chang, W. B., Wen, J. W., “Cyclic Voltammetry Characterization of Metal Complex Imprinted Polymer”, J. Mol. Recognit. 2002, 15, 204-208.
82.Dean, J. A., Lange’s Handbook of Chemistry, McGraw-Hill, New York, 1992.
83.Leussing, D. L., Hanse, R. C., “The Copper (Ⅱ)-Pyridine Complexes and Their Reaction with Hydroxide Ions” J. Am. Chem. Soc. 1957, 79, 4270-4273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top