跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡正苓
研究生(外文):Chen-Ling Hu
論文名稱:以可見光催化V-TiO2光觸媒降解亞甲基藍之研究
論文名稱(外文):Study on the degradation of methylene blue by V-TiO2 under visible light
指導教授:謝永旭謝永旭引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:134
中文關鍵詞:可見光催化溶膠凝膠法含釩之二氧化鈦亞甲基藍
外文關鍵詞:Photocatalystic under visible lightSol-gel methodV-TiO2Methylene blue
相關次數:
  • 被引用被引用:8
  • 點閱點閱:479
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是製備在可見光下具有光催化活性之二氧化鈦光觸媒,其方法是利用兩種不同的溶膠凝膠法製備含釩之二氧化鈦,並透過場發射掃描式電子顯微鏡(FE-SEM)、化學分析電子能譜儀(ESCA)、比表面積分析儀(BET)、X 光粉末繞射儀(XRD)及零電荷點 pH 值(pHzpc)分析以不同方法製備光觸媒與添加釩之光觸媒間的差異。經由亞甲基藍(Methylene blue)的可見光光催化實驗,探討合成光觸媒之活性差異。
在 FE-SEM 的結果顯示,光觸媒顆粒大約在 30 nm 左右,可知合成之光觸媒可達奈米等級;ESCA 的結果顯示,添加釩於二氧化鈦不會造成表面二氧化鈦氧化數的改變,而釩可能是以 V3+、V4+ 與 V5+ 存在於二氧化鈦表面;BET 結果顯示,釩之添加會造成二氧化鈦孔隙率的減少而降低其比表面積;XRD 結果顯示,二氧化鈦主要晶形為 Anatase,當釩的添加量超過一定比例時,V-TiO2 的晶形主要為 Rutile;pHzpc 結果顯示,添加釩之二氧化鈦有較低之 pHzpc。
兩種溶膠凝膠法製備之 V-TiO2 以亞甲基藍的脫色與礦化反應進行可見光催化活性之試驗,且與成品 Janssen TiO2 相比較,結果顯示,經過釩改質之二氧化鈦,可提升光觸媒對可見光之應答;在不同 pH 條件下會影響光觸媒之活性,本實驗在可見光系統中,pH 2 與 pH 7 在脫色與礦化方面有較顯著之效果。根據實驗之結果,進一步推論 V-TiO2 的作用機制。
The object of this study is the synthesis of visible-light responsed TiO2 photocatalysts. The V-doped TiO2 was synthesized by two different sol-gel methods. The prepared photocatalysts were characterized by Field emission scanning electron microscope (FE-SEM), Electron spectroscopy for chemical analysis system (ESCA), Brunauer emmett teller (BET), X-ray powder diffractometer (XRD) and Point of zero charge (pHzpc). The photocatalytic activity was evaluated by the degradation of methylene blue under visible light.
From the external analysis of SEM, ESCA and XRD, the results showed that the particle size of TiO2 was about 30 nm and mainly Anatase structure, but the contents of the Rutile phase increased with the increase of the amount of doped Vanadium on TiO2. The valence number of V-TiO2 photocatalyst were not altered and Vanadium in the TiO2 structure was in the status of V3+, V4+ and V5+. According to the BET, doped Vanaduium on TiO2 would decrease the surface area due to decrease of porosity. The pHzpc of V-TiO2 phtotcatalyst were lower than pure TiO2.
Compare with Janssen TiO2, the V-TiO2 have better response of visible light. In visible light/V-TiO2 system, at pH 2 and pH 7 have better discoloration and mineralization. The photocatalystic reaction mechanism was investigated by visible light/V-TiO2 system.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2-1 光化學反應 3
2-1-1 光化學反應 3
2-1-2 半導體的基本性質與分類 8
2-1-3 半導體的選擇 13
2-1-4 光催化之原理與機制 13
2-2 二氧化鈦的基本性質 16
2-2-1 晶型構造 16
2-2-2 光誘導特性 18
2-3 二氧化鈦的製備方法 24
2-3-1 溶膠凝膠法(Sol-gel) 24
2-3-2 熱水解法 25
2-3-3 水熱法 26
2-3-4 氣相法 27
2-3-5 微乳膠法 27
2-4 提升光觸媒對可見光的應答 29
2-4-1 改質方式 29
2-4-2 改質光觸媒對可見光應答之提升 32
第三章 實驗設備與方法 41
3-1 實驗藥品與配製 41
3-1-1 實驗藥品 41
3-1-2 藥品配製 43
3-2 實驗設備 44
3-2-1 TiO2 粉體與改質光觸媒之製備 44
3-2-2 光催化實驗 44
3-3 實驗方法 46
3-3-1 TiO2 光觸媒之製備 46
3-3-1-1 TiO2-I 之製備 49
3-3-1-2 TiO2-II 之製備 51
3-3-2 V-TiO2 光觸媒之製備 51
3-3-3 亞甲基藍試驗 55
3-4分析項目及方法 57
3-4-1 光觸媒定性分析 57
3-4-2 色度分析 61
3-4-3 總有機碳(TOC)分析 62
第四章 結果與討論 65
4-1 前置實驗 65
4-1-1 亞甲基藍吸收度 65
4-1-2 分析方法之再現性 66
4-2 光觸媒特性分析 67
4-2-1 外表與顏色觀察 67
4-2-2 場發射掃描式電子顯微鏡 68
4-2-3 化學分析電子能譜儀 79
4-2-4 比表面積 95
4-2-5 X 光粉末繞射儀 97
4-2-6 零電荷點 pH 值(pHzpc) 101
4-3 光觸媒活性分析 108
4-3-1 背景實驗 108
4-3-1-1 直接光解實驗 108
4-3-1-2 吸附實驗 109
4-3-2 亞甲基藍脫色與礦化反應 111
4-3-2-1 未添加金屬 V 之 TiO2 112
4-3-2-2 SG-I 與 SG-II 之比較 113
4-3-2-3 添加金屬 V 的影響 115
4-3-2-4 添加不同金屬 V 量之 TiO2 116
4-3-2-5 pH 效應 118
4-4 反應機制探討 120
第五章 結論與建議 123
5-1 結論 123
5-2 建議 124
參考文獻 125
附錄 133
中文書籍
申洋文、車雲霞(1998)“無機化學叢書,第八卷,鈦分類”科學出版社,北京。
胡振國譯(1989)“半導體元件-物理與技術”全華圖書公司 。
陳松興(1978)“異相催化反應”徐氏基金會。
葉君棣、陳志堅譯(1983)“X射線光電子分光儀應用手冊”黎明書店,新竹。
謝芳生、劉濱達譯(1986)“微電子學”東華書局。
黃文魁、鄭光煒、王偉洪、陳怡甄(2004) “亞太奈米光觸媒之技術發展趨勢與應用市場”工業技術研究院。
中文論文
林榮良(2002)“TiO2光催化原理和應用例子”Chemistry (The Chinese Chem. SOC., Taipei),60(3),457-461。
洪雲傑(2005)“以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究”碩士論文,國立中興大學環境工程學系。
葉志揚(2000)“以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定”碩士論文,國立台灣大學化學工程研究所。
盧明俊、阮國棟、陳重男(1991)“二氧化鈦薄膜催化光分解二氯松之研究”第十六屆廢水處理技術研討會論文集。

英文書籍
Aegerter, M.A. (1989). "Sol-gel: science and technology." World Scientific, New Jersey.
Dean, J. A., ed. (1973). "Lange''s handbook of chemistry, Ilth ed. " Mcgraw-Hill, New York, 3-123.
Finklea, H. O. (1988). "Semiconductor electrode." Elsevier Press, New York.
Gratzel, M. (1983). "Energy: resources through photochemistry and catalysis." Acadamic Press lnc.
Gratzel, M., Serpone, N. and Pelizzetti, E., Ed. (1989). "Colloidal semiconductor-in photocatalysis." John Wiley & Sons, New York.
Brinker, C. J. and Scherer, G. W. (1990). "Sol gel science." Academic Press.
Lewis, N. S.. Rosenbluth, M. L., Serpone, N. and Pelizzetti, E., Ed. (1989). "Theory of semiconductor materials-in photocatalysis." John Wiley & Sons, New York.
Maron, S. H. and Lando, J. B. (1974). "Fundamentals of Physical Chemistry." Macmillan Publishing Co. Inc., New York, 720.
Sakata, T., Kawai, T., Gratzel, M., Ed. (1983). "Photosynthesis and photocatalysis with semiconductor powder-in energy resources through photochemistry and catalysis." Academic Press, New York.
Shaw, D.J. (1997). "Introduction to colloid and surface chemistry, 4th edition." Butterworths.
Stumm, W. (1992). "Chemstry of the solid-water interface." John Wiley & Sons, New York.
Turro, N. J. (1965). "Molecular photochemistry." Columbia University, New York, 1.

英文期刊
Balikdjian, J. P., Davidson, A., Launay, S., Eckert, H. and Che, M.(2000). "Sintering and phase Transformation of V-loaded anatase materials containing bulk and surface V species." Journal of Physical Chemistry B, 104, 8931-8939.
Bhattacharya, A. K., Pyke, D. R., Reynolds, R.,Walker, G. C. and Werrett, C. R.(1997). "The use of O1s charge referenceing for the X-ray photoelectron spectroscopy of Al/Si, Al/Ti, Al/Zr mixed oxide." Journal of Materials Science Letters, 16, 1-3.
Bulent E. and Yoldas (1986). "Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters." Journal of Materials Science, 21, 1087-1092.
Chen, H. W., Ku, Y., and Kuo, Y. L. (2007). "Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis." Water Research, In Press, Corrected Proof.
Cheng, P., Li, W., Zhou, T., Jin, Y., and Gu, M. (2004). "Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation." Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 97-101.
Chengyu, W., Huamei, S., Ying, T., Tongsuo, Y., and Guowu, Z. (2003). "Properties and morphology of CdS compounded TiO2 visible-light photocatalytic nanofilms coated on glass surface." Separation and Purification Technology, 32(1-3), 357-362.
Childs, L. P. and Ollis, D. F. (1980). "Is photocatalysis catalytic?" Journal of Catalysis, 66, 383-390.
Doede, C. M. and Walker, C. A. (1955). "Photochemical engineering." Chemical Engineering, 62(2), 159-178.
Doeuff, S., Henry, M., Sanchez, C. and Livage, J. (1987), "Hydrrolysis of titanium alkoxide: Modification of the molecular precursor by acetic acid." Journal of non-crystalline solids, 89, 206-216.
Fox, M. A. and Dulay, M. T. (1993). "Heterogeneous photocatalysis." Chemical Reviews, 93, 341-350.
Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A. and Furic, K. (1996), "Microstructure of nanosized TiO2 obtained by sol-gel synthesis." Materials Letters, 28, 225-229.
Hague, D. C. and Mayo, M. J. (1994). "Controlling crystallinity during processing of nanocrystalline titania." Journal of the American Ceramic Society, 77, 1957-1960.
Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann (1995). "Environmental applications of semiconductor photocatalysis." Chemical Reviews, 95, 69-75.
Iliev, V., Tomova, D., Bilyarska, L., Prahov, L., and Petrov, L. (2003). "Phthalocyanine modified TiO2 or WO3 catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light." Journal of Photochemistry and Photobiology A: Chemistry, 159(3), 281-287.
Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M. (2001). "Preparation of stable anatase-type TiO2 and its photocatalytic performance." International Journal of Inorganic Materials, 3, 809–811.
Iwasaki, M., Hara, M., Kawada, H., Tada, H., and Ito, S. (2000). "Cobalt ion-doped TiO2 photocatalyst response to visible light." Journal of Colloid and Interface Science, 224(1), 202-204.
Kamat, P. V. (1993). "Photochemistry on nonreactive and reactive (semiconductor) surfaces." Chemical Reviews, 93, 267-269.
Kim E. J., Oh, S. H. and Hahn, S. H. (2001), "Influence of calcination on microstructures and photoactivities of alkoxide-derived TiO2 nanoparticles prepared in W/O microemulsions." Chemical Engineering Communications, 187, 171-184.
Kim, E. J. and Hahn, S. H. (2001). "Microstructure and photoactivity of titania nanoparticles prepared in nonionic W/O microemulsions." Material Science and Engineering A, 303(1-2), 24-29.
Kumar, K. P., Keizer, K., Burggraaf, A. J., Okubo, T., Nagamoto, H. and Morooka, S. (1992). "Densification of nanostructured titania assisted by aphase-transformation," Nature, 358, 48-51.
Larrubia, M. A. and Busca, G.(2001) "An ultraviolet-visible-near infrared study of the electronic structure of oxide-supported vanadia-tungsta and vanadia-molybdena." Materials Chemistry and Physics, 72, 337-346.
Legan, R. W. (1982). "Ultraviolet light takes on CPI roles." Chemical Engineering, January, 89, 95-100.
Li, X. Z., Li, F. B., Yang, C. L., and Ge, W. K. (2001). "Photocatalytic activity of WOx-TiO2 under visible light irradiation." Journal of Photochemistry and Photobiology A: Chemistry, 141(2-3), 209-217.
Mrowetz, M., Balcerski, W., Colussi, A. J. and Hoffmann, M. R.(2004) "Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination." Journal of Physical Chemistry B, 108, 17269–17273.
Ni, M., Leung, M. K. H., Leung, D. Y. C., and Sumathy, K. (2007). "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production." Renewable and Sustainable Energy Reviews, 11(3), 401-425.
Okamoto, K., Yasunori, Y., Hirok, T., Masashi, T., and Akira, T. (1985). "Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder." Bulletin of the Chemical Society of Japan, 58, 2015-2022.
Ollis, D. F., Pelizzetti, E. and Serpone, N. (1991). "Destruction of water contaminants." Environmental Science & Technology, 25(9), 1523-1529.
Park, H. K., Kim, D. K. and Kim, C. H. (1997), "Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4." Journal of the American Ceramic Society, 80(3), 743-749.
Park, H. K., Moon, Y. T., Kim, D. K. and Kim, C. H. (1996), "Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2." Journal of the American Ceramic Society, 79, 2727-2734.
Park, S. D., Cho, Y. H., Kim, W. W. and Kim, S. J. (1999), "Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature." Journal of Solid State Chemistry, 146, 230-238.
Prengle, H. W. and Mauk, C. E. (1978). "New technology: ozone/UV chemical oxidation waste water process for metal complexes, organic species and disinfection." AIChE Symposium Series, 74(178), 228.
Rodella, C.B., Nascente, P. A. P., Franco, R. W. A., Magon, C. J., Mastelaro, V. R. and Florentino, A. O.(2001). "Surface characterization of V2O5/TiO2 catalystic system." Physica Status Solidi. A: Applied Research, 187(1), 161-169.
Sclafain, A., Palmisano, L. and Schiavello, M. (1990). "Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion." Journal of Physical Chemistry B, 94(2), 829-832.
Srinivasan, S. S., Wade, J., Stefanakos, E. K., and Goswami, Y. (2006). "Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2." Journal of Alloys and Compounds, 424(1-2), 322-326.
Suarez-Parra, R., Hernandez-Perez, I., Rincon, M. E., Lopez-Ayala, S., and Roldan-Ahumada, M. C. (2003). "Visible light-induced degradation of blue textile azo dye on TiO2/CdO-ZnO coupled nanoporous films." Solar Energy Materials and Solar Cells, 76(2), 189-199.
Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M., and Bae, Y. C. (2004). "Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation." Journal of Photochemistry and Photobiology A: Chemistry, 163(1-2), 37-44.
Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L. and Mulins, M. E. (1993). "Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water.”, Water Environment Research, 65(5), 665-673.
Texier, I., Ouazzani, J., Delaire, J. and Giannotti, C. (1999). "Study of the Mechanisms of the photodegradation of atrazine in the presence of two photocatalysts: TiO2 and Na4W10O32." Tetrahedron, 55(11), 3401-3412.
Turner, J. C. R. (1981). "An introduction to the theory of catalytic reactors." Catalysis Science and Technology, 1, 43-86.
Wang, J., Uma, S. and Klabunde, K. J. (2004). "Visible light photocatalysis in transition metal incorporated titania-silica aerogels." Applied Catalysis B: Environmental, 48(2), 151-154.
Wei, Y., Wu, R. and Zhang, Y. (1999). "Preparation of monodispersed spherical TiO2 powder by forced hydrolysis of Ti(SO4)2 solution." Materials Letters, 41, 101-103.
Wu, J. C. S. and Chen, C. H. (2004). "A visible-light response Vanadium-doped titania nanocatalyst by sol-gel method." Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 509-515.
Xie, Y. and Yuan, C. (2003). "Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation." Applied Catalysis B: Environmental, 46(2), 251-259.
Xie, Y. and Yuan, C. (2004). "Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation." Applied Surface Science, 221(1-4), 17-24.
Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., and Anpo, M. (2003). "Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2." Catalysis Today, 84(3-4), 191-196.
Yang, J., Mei, S. and Rerreira, J. M. F. (2000). "Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition." Journal of the American Ceramic Society, 83(6), 1361-1368.
Yoneyama, H., Toyoguchi, Y. and Tamura, H. (1972). "Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solution." Journal of Physical Chemistry, 76, 3460-3464.
Zafiriou, O. C., Dubien, J. J., Zepp, R. G. and Zika, R. G. (1984). "Photochemistry of natural waters." Environmental Science & Technology, 18(12), 358-371.
Zepp, R. G. (1988). "Factors affecting the photochemical treatment of hazardous waste." Environmental Science & Technology, 22(3), 256-257.
Zhang, R. B. and Gao, L. (2002). "Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles." Materials Research Bulletin, 37(9), 1659-1666.
Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M., and Zhao, X. S. (2007). "Enhancement of photocatalytic activity of P25 TiO2 by Vanadium-ion implantation under visible light irradiation." Journal of Colloid and Interface Science, In Press, Corrected Proof.
Zhu, J., Zheng, W., He, B., Zhang, J. and Anpo, M. (2004). "Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water." Journal of Molecular Catalysis A: Chemical, 216(1), 35-43.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top