跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周映孜
研究生(外文):YingTzy Jou
論文名稱:以蛋白質交互作用分析耐鹽植物冰花腎形細胞累積耐鹽相關mcSKD1蛋白及其參與之高等植物耐鹽機制
論文名稱(外文):Characterization of bladder cell-specific mcSKD1 and its interacting proteins in halophyte Mesembryanthemum crystallinum L.
指導教授:顏宏真顏宏真引用關係
指導教授(外文):Hungchen Emilie Yen
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:122
中文關鍵詞:冰花蛋白質交互作用
外文關鍵詞:Mesembryanthemum crystallinumyeast two-hybrid
相關次數:
  • 被引用被引用:4
  • 點閱點閱:644
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
冰花(Mesembryanthemum crystallinum L.)是一種具有C3-CAM光合作用轉換形式植物可生存於高鹽環境的耐鹽模式植物,表皮特化的腎型細胞在高鹽環境下液胞會迅速膨大,具有儲存水分及區隔過量鈉離子的功能。利用酸性下會呈紅色的染劑neutral red浸染不同時期的冰花表皮細胞,觀察到冰花腎型細胞液胞pH值除了會隨著發育逐漸由酸性轉變為中性外,幼年期的腎型細胞在照光時液胞pH值亦會快速升高,顯示腎型細胞的代謝旺盛並非僅供儲存之用,還具有調節離子平衡之功能。冰花的mcSKD1 (suppressor of K+ transport growth defect)是一個會在冰花的腎型細胞表現的鹽誘導基因,mcSDK1蛋白與酵母菌的液胞運送相關蛋白VPS4 (vacuolar protein sorting 4)和阿拉伯芥AAA-type ATPase (ATPase associated with a variety of cellular activities)具有高度的相似性,並觀察到mcSKD1主要分布在冰花細胞質之ER/Golgi network。為了更進一步瞭解mcSKD1蛋白之功能,以酵母菌雙雜交系統分別由阿拉伯芥基因庫中篩選出與SKD1具有蛋白質交互作用的過氧化逆境相關的catalase 3、細胞壁結構的AGP21 (arabinogalactan protein 21)等蛋白。以及由冰花根部加鹽處理三天所製成的基因庫篩選出與SKD1具有蛋白質交互作用蛋白mcSNF1 (sucrose non-fermenting 1)及mcCPN1 (copine 1)等蛋白。SNF1已知為一參與醣類代謝及逆境相關訊息傳遞作用之蛋白激酶,mcSNF1還具有UBA (ubiquitin associated) domain,mcCPN1蛋白具有與細胞膜蛋白質運送相關之VWA domain及具有E3 ubiquitin ligase活性之RING domain,mcSNF1與mcCPN1也會受加鹽誘導提高蛋白累積量。免疫共沈澱證明了mcSKD1與mcSNF1與mcCPN1具有蛋白質交互作用,以pull-down的蛋白產物比例計算發現,加鹽處理會使mcSKD1與mcSNF1結合的比例提高三倍。利用蔗糖梯度分離microsome蛋白以及細胞免疫染色法,發現加鹽處理會快速改變mcSKD1、mcSNF1和mcCPN1在細胞中分佈的位置,且colocolization的比例提高。當以破壞細胞骨架的藥劑處理細胞時,mcSKD1及mcSNF1在細胞中的分布改變,累積在細胞邊緣,推測細胞骨架參與mcSKD1在細胞中的運輸。鹽處理會造成阿拉伯芥snf1或copine1突變株中atSKD1不正常的聚集,並對鹽更加敏感。實驗結果推測冰花mcSKD1蛋白透過與逆境訊息傳遞mcSNF1、細胞膜相關蛋白mcCPN1的交互作用,參與鹽逆境時ubiquitin相關的蛋白質運送或是逆境訊息傳遞,幫助耐鹽植物冰花在高鹽環境下維持正常生理代謝。
The halophyte Mesembryanthemum crystallinum L. (ice plant) is an inducible CAM and a model plant for studying salt-tolerant mechanisms in higher plants. It contains specialized epidermal bladder cells (EBCs) which rapidly expend under salt stress. The major functions of EBCs are maintaining ion homeostasis and water storage. During plant development, increase in vacuolar pH was observed in EBCs. In addition, light-induced rapid change in vacuolar pH was found in juvenile stage of ice plant indicating EBCs are metabolic active cells. A salt-induced gene mcSKD1 (suppressor of K+ transport growth defect) is highly expressed in EBCs. It has high homology to yeast VPS4 (vacuolar protein sorting 4) and Arabidopsis AAA-type ATPase (ATPase associated with a variety of cellular activities). Immunofluorescence labeling showed mcSKD1 protein was located in cytoplasm around ER/Golgi network. Yeast two-hybrid screen was performed to identify mcSKD1-interacting proteins. Using a library constructed from Arabidopsis, catalase 3 and AGP21 (arabinogalactan protein 21) were identified. Using a library constructed from salt-treated ice plant roots, mcSNF1 (sucrose non-fermenting 1) and mcCPN1 (copine 1) were further characterized. Yeast SNF1 is a ser/thr kinase that plays an important role in carbon metabolism and stress signaling. The SNF1 protein identified in ice plant contained an extra UBA (ubiquitin associated) domain. Sequence analysis of mcCPN1 showed it contains a VWA domain for membrane trafficking and a RING domain for protein ubiquitination. The accumulation of mcSNF1 and mcCPN1 was both induced by salt stress. Co-immunoprecipitation experiment showed mcSKD1 interacted with both mcSNF1 and mcCPN1 in vitro. In vivo pull-down assay showed a 3-fold increase in the association between mcSKD1 and mcSNF1 under salt stress. Microsomal fractionation and immunolabeling experiments showed salt induced rapid changes in cellular localization of mcSKD1, mcSNF1, and mcCPN1. When the cytoskeleton was disrupted, the distribution of mcSKD1 and mcSNF1 was altered, as seen by abnormal aggregation around plasma membrane. The result suggested that mcSKD1 is trafficking along the cytoskeleton. Arabidopsis snf1 and copine 1 mutants showed more salt sensitive than the wild type and aggregation of atSKD1 inside mutant cells. The results suggested that mcSNF1 and mcCPN1 function together with mcSKD1 in ubiquitin-related protein trafficking and stress signal transduction in order to maintain normal growth under high salinity.
Catalog:
Abstract in Chinese II
Abstract IV
Catalog VI
Catalog of tables VIII
Catalog of figures IX
Preface 1
Chapter 1 6
Abstract 7
Introduction 8
Material and methods 10
Results 12
Discussion 14
References 17
Chapter 2 24
Introduction 25
Material and methods 30
Results 34
Discussion 39
References 45
Chapter 3 73
Introduction 74
Material and methods 78
Results 84
Discussion 91
References 95

Catalog of tables:
Chapter 2
Table 1. The category “tissue” was used in similarity search. Following genes are sorted with AtSKD1…………………………………………………. 54
Table 2. The category “nutrient treatment” was used in similarity search. Following genes are sorted with AtSKD1………………………………… 55
Table 3. The category “abiotic stress” was used in similarity search. Following genes are sorted with AtSKD1…………………………………………….. 56
Table 4. Putative mcSKD1-interacting proteins identified from Arabidopsis library…………………………………………………………………….. 57
Table 5. Putative mcSKD1-interacting proteins identified from salt-stressed ice plant library……………………………………………………………….. 58
Chapter 3
Table 1. Search mcSKD1 protein modification pattern on PROSITE database……………………………………………………………….. 102
Table 2. Search mcSNF1 protein modification pattern on PROSITE database………………………………………………………………... 103
Table 1. Search mcCPN1 protein modification pattern on PROSITE database………………………………………………………………... 104


Catalog of figures:
Chapter 1
Fig. 1. Morphology and vacuole acidity of ice plant EBC during development... 21
Fig 2. The light-induced decrease in acidity of EBCs…………………………... 22
Fig 3. Change in composition of raphide crystals……………………………….. 23
Chapter 2
Fig 1. Quantitative analysis of atSKD1 expression under various stresses……... 60
Fig 2. Total cellular protein extracted from 10-day-old cultures ice plant cells… 61
Fig 3. Distribution of mcSKD1 in microsomal fractions………………………... 62
Fig 4. Double-labeling immunofluorescence……………………………………. 63
Fig 5. Immunstaining of ice plant leaf EBCs……………………………………. 64
Fig 6. The accumulation of atSKD1 in 8-week-old Arabidopsis plants…………. 65
Fig 7. The localization of atSKD1 in cultured Arabidopsis cells………………... 66
Fig 8. Isolation of Poly A+ mRNA for yeast two hybrid screening library……… 67
Fig 9. In vivo interaction between mcSKD1 and Catalase 3 or AGP21………… 68
Fig 10. In vivo interaction between mcSKD1 and Copine 1 or SNF-1…………. 69
Fig 11. Arabidopsis QTL markers showing positions of SKD1-interaction proteins……………………………………………………………………
70
Fig 12. Characterization of the mcSNF1 from ice plant………………………… 71
Fig 13. Characterization of the mcCPN1 from ice plant………………………… 72



Chapter 3
Fig 1. Time course expression of mcSNF1in plant callus under salt stress……... 105
Fig 2. Time course expression of mcCPN1 under salt stress…………………… 106
Fig 3. In vitro coimmunoprecipitation of mcSKD1 with mcCPN1 or mcSNF1… 107
Fig 4. The salt stress changed protein-protein interaction ratio of mcSKD1, mcSNF1 and mcCPN1.……………………………………………………
108
Fig 5. Double-labeling immunofluorescence of mcSKD1 and mcCPN1 in ice plant cells.………………………………………………………………… 109
Fig 6. Double-labeling immunofluorescence of mcSKD1 and mcSNF1 in ice plant cells………………………………………………………………… 110
Fig 7. Time-course accumulation of mcSKD1, mcSNF1 and mcCPN1 within 24 hours of salt stress………………………………………………………..
111
Fig 8. mcSNF1 is a extracellular protein.………………………………………. 112
Fig 9. Analysis of protein modification…………………………………………. 113
Fig 10. Distribution of mcSKD1, mcSNF1 and mcCPN1 in microsomal fractions of ice plant leaves.………………………………………………
114
Fig 11. Distribution of mcSKD1, mcSNF1, and mcCPN1 in microsomal fractions.…………………………………………………………
115
Fig 12. Cell viability test………………………………………………………… 116
Fig 13. Initial changes in cellular distribution of mcSKD1, mcSNF1, and mcCPN1 by 200 mM NaCl.……………………………………………….
117
Fig 14. The effects of cytoskeleton-disrupting drugs on mcSDK1 distribution and endocytosis pathway in ice plant cells.…………………………….
118
Fig 15. The effects of cytoskeleton-disrupting drugs on mcSKD1, mcSNF1 and mcCPN1 localization…………………………………………………………….
119
Fig 16. Accumulation of atSKD1 protein in wild type and akin10, copine1 mutants.…………………………………………………………………
120
Figure 17. Dose-dependent accumulation of atSKD1 protein in wild type Arabidopsis and copine1, snf1 mutants.…………………………………..
121
Figure 18. Double-labeling immunofluorescence on wild type Arabidopsis, snf1, and copine1 mutants…………………………………………….
122
Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen, R.G., Bohnert, H.J., Griffiths, H. (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138, 171-191.
Arnott, H.J., Webb, M.A. (2000) Twinned raphides of calcium oxalate in grape (Vitis): Implications for crystal stability and function. Int. J Plant Sci. 161, 133-142.
Barkla, B.J., Vera-Estrella, R., Camacho-Emiterio, J., Pantoja, O. (2002) Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct. Plant Biol. 29, 1017-1024.
Barkla, B.J., Zingarelli, L., Blumwald, E., Smith, J. (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol. 109, 549-556.
Bohnert, H.J., Cushman, J.C. (2000) The ice plant cometh: lessons in abiotic stress tolerance. Plant Growth Regul. 19, 334-346.
Chu, C., Dai, Z., Ku, M.S.B., Edwards, G.E. (1990) Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol. 93, 1253-1260.
De Rocher, E.J., Harkin, K.R., Galbraith, D.W., Bohnert, H.J. (1990) Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250, 99-101.
Epimashko, S., Fischer-Schliebs, E., Christian, A.L., Thiel, G., Lüttge, U. (2006) Na+/H+ -transporter, H+-pumps and an aquaporin in light and heavy tonoplast membranes from organic acid and NaCl accumulating vacuoles of the annual facultative CAM plant and halophyte Mesembryanthemum crystallinum L. Planta 224, 944-951.
Epimashko, S., Meckel, T., Fischer-Schliebs, E., Luttge, U., Thiel, G. (2004) Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J 37, 294-300.
Forsthoefel, N.R., Cushman, M.A.F., Ostrem, J.A., Cushman, J.C. (1998) Induction of a cysteine protease cDNA from Mesembryanthemum crystallinum leaves by environmental stress and plant growth regulators. Plant Sci. 136, 195-206.
Franceschi, V.R., Horner, H.T. (1980) Calcium oxalate crystals in plants. Botanical Review 46, 361–427.
Franceschi, V.R., Nakata, P.A. (2005) Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol. 56, 41-71.
Golldack, D., Dietz, K.J. (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and the tissue specific. Plant Physiol. 125, 1643-1654.
Hara-Nishimura, I., Hatsugai, N, Nakaune, S., Kuroyanagi, M., Nishimura, M. (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol. 8, 404-8.
Hiraiwa, N., Nishimura, M., Hara-Nishimura, I. (1999) Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. FEBS Lett. 447, 213-216.
Jou, Y., Chou, P.H., He, M., Hung, Y., Yen, H.E. (2004) Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced gene mcSKD1 in the halophyte Mesembryanthemum crystallinum. Plant Mol. Biol. 54, 881-893.
Kirch, H.H., Vera-Estrella, R., Golldack, D., Quigley, F., Michalowski, C.B., Barkla, B.J., Bohnert, H.J. (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol. 123, 111-124.
Kramer, D. (1979) Ultrastructural observations on developing leaf bladder cells of Mesembryanthemum crystallinum L. Flora 168, 193-204.
Libik, M., Pater, B., Elliot, S., Slesak, I., Miszalski, Z. (2004) Malate accumulation in different organs of Mesembrysnthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism. Z. Naturforsch 59c, 223-228.
Lüttge, U., Fischer, E., Steudle, E. (1978) Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue of Mesembryanthemum crystallinum L. Plant, Cell and Environ. 1, 121-129.
Paul, M.J., Cockburn, W. (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J Exp. Bot .40, 1093-1098.
Marrero, J., Gonzalezn, L.J., Sanchez, A., Ayala, M., Paz-Lago, D., Gonzalez, W., Fallarero, A., Castellanos-Serra, L., Coto, O. (2004) Effect of high concentration of Co2+ on Enterobacterliquefaciens strain C-1: a bacterium highly resistant to heavy metals with an unknown genome. Proteomics 4, 1265-1279.
Miszalski, Z., Ślesak, L., Niewiadomska, E., Baczek-Kwinta, R., Lüttge, U., Ratajczak, R. (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant, Cell and Environ. 21, 169-179.
Nelson, D.E., Koukoumanos, M., Bohnert, H.J. (1999) Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol 119, 165-172.
Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37, 186–198.
Rygol J, Zimmermann U, Balling A (1989) Water relations of individual leaf cells of Mesembryanthemum crystallinum plants grown at low and high salinity. J Membr. Biol. 107, 203-212.
Schuster AM, Davies E (1983) Ribonucleic acid and protein metabolism in pea epicotyls. I. The aging process. Plant Physiol 73, 809-816.
Steudle E, Lüttge U, Zimmermann U (1975) Water relations of the epidermal bladder cells of halophytic species Mesembryanthemum crystallinum: direct measurement of hydrostatic pressure. Planta 126, 229-246.
Steudle E, Zimmermann U (1977) Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 59, 285-289.
Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol. 125, 604-614.
Su, H., Golldack, D., Zhao, C. and Bohnert, H.J. (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol.129, 1482-1493.
Tester, M., Davenport, R. (2003) Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503-527.
Vogt, T., Ibdah, M., Schmidt, J., Wray, V., Nimtz, M., Strack, D. (1999) Light- induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry 52, 583-592.
Wang, Y-L. (2005) The high salinity-induced changes of protein profile and the identification of related proteins in Mesembryanthemum crystallinum L. Master Thesis, National Chung-Hsing University, Taichung, Taiwan.
Woloshuk, C.P., Meulenhoff, J.S., Sela-Buurlage, M., van den Elzen, P.J.M., Cornelissen, B.J.C. (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3, 619-628.
Yen, H.E., Grimes, H.D., Edwards, G.E. (1995) The effects of high salinity, water-deficit, and abscisic acid on phosphoenolpyruvate carboxylase activity and proline accumulation in M. crystallinum cell cultures. J Plant Physiol.145, 557-564.
Zhu, J.K. (2001) Plant salt tolerance. Trends in Plant Sci. 6, 66-71.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top