跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖祐毅
研究生(外文):Yu-Yi Liao
論文名稱:枯草桿菌sigA突變株長絲狀生長特性和其sigD基因表現關係之探討
論文名稱(外文):Characterization of Bacillus subtilis sigA mutant with a filamentous phenotype and the expression of sigD.
指導教授:張邦彥張邦彥引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:枯草桿菌
外文關鍵詞:SigDBacillus subtilis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Bacillus subtilis DB1001是一對溫度敏感的σA突變株,其σA蛋白在與啟動子 -10 DNA的結合區域上,具有Ala-197-Pro的取代突變。不同於野生型B. subtilis DB2的短桿狀,B. subtilis DB1001在37℃下具有長絲狀的生長形態。雖然B. subtilis DB1001在生長過程中,細胞間仍會形成隔膜,但是隔膜中細胞壁的內凹,卻非常緩慢。只有在營養生長末期,它才有明顯細胞分裂的現象,推測此可能與B. subtilis DB1001細胞內分解細胞壁的自溶素的延遲生產有關。由於只有調控自溶素表現的sigD基因,能夠補救B. subtilis DB1001的長絲狀生長缺失,因此我們相信B. subtilis DB1001細胞分裂延遲的原因,可能和其細胞內σD蛋白的含量或σD蛋白的轉錄活性不足有關。本研究乃在澄清上述兩種可能性,並希望藉此瞭解B. subtilis細胞中sigD基因表現之調控。
利用西方墨點法分析,探討B. subtilis DB1001中σD及FlgM蛋白的含量,發現它的σD蛋白的含量似乎較野生型者來的少;FlgM蛋白含量在兩者之間,則沒有明顯的差異。利用β-galactosidase activity分析控制sigD operon的各個啟動子 (PD-3、PA、PsigD) 活性,發現B. subtilis DB1001的雙重啟動子(tandem promoters;PD-3及PA) 活性遠較野生型者低,但是各別的PD-3及PA啟動子活性,則差異不大。這種結果顯示B. subtilis DB1001細胞分裂延遲的原因,應該是sigD mRNA表現量不足,造成細胞內σD蛋白含量不足所致。另外,B. subtilis sigD的表現,可能會受到一種特殊的不同σ-RNA聚合酶之轉錄協同作用所調控。
Bacillus subtilis DB1001 is a temperature-sensitive (Ts) sigA mutant with an Ala-197-Pro substitution in the promoter -10 binding region of the σA factor. Different from the small rod shape of the wild-type (Wt) sigA strain, B. subtilis DB2, the Ts sigA strain assumes a filamentous growth phenotype at 37°C. Although the septum between two sister cells of B. subtilis DB1001 generates normally during vegetative growth, invagination of septum was fairly slow. Not until stationary phase does the cell division become significant, suggesting that the filamentous phenotype of B. subtilis DB1001 is ascribed to the autolysis delay of cell wall. Since only sigD, which controls the expression of some of the atutlysin genes, can rescue the filamentous growth phenotype of B. subtilis DB1001, it is believed that the division delay of B. subtilis DB1001 is attributed to insufficient content or transcription activity of the σD. This study is aimed to distinguish between these two possibilities and to understand the regulation of B. subtilis sigD expression.
Western blot analyses of the contents of σD and FlgM in B. subtilis revealed that the content of σD in B. subtilis DB1001 is much lower than that found in the Wt sigA strain; however, there is no significant difference in the contents of FlgM between the two sigA strains. The β-galactosidase activity assays revealed that the activity of the tandem operon promoters (PD-3 and PA) of the sigD in B. subtilis DB2 is 10-fold higher than that found in B. subtilis DB1001. However, the activity difference became insignificant as the tandem promoters were separated. Taken together, these results indicated that the delay of B. subtilis DB1001 cell division must be due to the insufficient expression of sigD mRNA and thus the insufficient content of σD. More importantly, these results implicated that the expression of B. subtilis sigD operon is under the control of a novel mechanism which involves a synergistic effect of two different σ-RNA polymerase holoenzymes.
前言………………………………………………………………………1
材料與方法 …………………………………………………………… 8
一、試藥來源……………………………………………………………8
二、菌株、質體…………………………………………………………8
三、實驗方法……………………………………………………………8
1. pET21d-flgM質體之構築……………………………………………8
2. pT7-5-sigD質體之構築…………………………………………… 8
3. 野生型σD蛋白及FlgM蛋白之大量生產及抗體製備……………… 9
4. 不同生長時期中B. subtilis DB2、DB1001細胞內σA蛋白、σD蛋白及FlgM蛋白的含量比較………………………………………………9
5. 枯草桿菌sigD基因缺陷突變株之構築……………………………10
6. pCoiZA-PD-3、PA、PSigD、PD-3A、PD-3ex、PAex 質體之構築……………………………………………………………………… 11
7. 分析B. subtilis DB2、DB1001中控制sigD operon基因之起動子DNA表現的情形…………………………………………………………11
8. 野生株B. subtilis DB2及突變株B. subtilis DB1001 sigD mRNA表現之分析…………………………………………………………… 12
9. pCT24-PD-3、PA、PSigD、PD-3A、PD-3ex、PAex質體之構築 13
10. 蛋白質之定量…………………………………………………… 13
11. σ蛋白之重組RNA聚合酶的多循環體外轉錄活性(in vitro multiple cycle transcription activity)分析…………………13
結果 ……………………………………………………………………15
一、σD及FlgM蛋白之大量生產及抗體製備………………………… 15
二、不同生長時期中B. subtilis DB2、DB1001細胞內σA、σD及FlgM蛋白的含量比較 …………………………………………………… 15
三、sigD 破壞突變株之構築…………………………………………17
四、B. subtilis DB2、DB1001中控制sigD operon基因之起動子DNA表現之情形…………………………………………………………… 17
五、B. subtilis DB2及B. subtilis DB1001中 sigD mRNA含量之分析……………………………………………………………………… 19
六、不同RNA聚合酶轉錄協同作用之分析……………………………19
討論及結論 ……………………………………………………………20
附圖及說明…………………………………………………………… 23
表格 ……………………………………………………………………39
參考文獻 ………………………………………………………………43
Addinall, S. G., Bi, E., and Lutkenhaus, J. (1996). FtsZ ring formation in fts mutants. J. Bacteriol. 178: 3877–3884.
Bara´k, I., Prepiak, P., and Schmeisser, F. (1998). MinCD proteins control the septation process during sporulation of Bacillus subtilis. J. Bacteriol. 180: 5327–5333.
Berotero, M. G., Gonzales, B., Tarricone, C., Ceciliani, F., and Galizzi, A. (1999). Overproduction and characterization of the Bacillus subtilis anti-sigma factor FlgM. J. Biol. Chem. 274: 12103–12107.
Bi, E., and Lutkenhaus, J. (1993). Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175: 1118–1125.
Blackman, S. A., Smith, T. J., and Foster, S. J. (1998). The role of
autolysins during vegetative growth of Bacillus subtilis 168.
Microbiology 144: 73–82.
Den Blaauwen T., Buddelmeijer, N., Aarsman, M. E., Hameete, C.M., Nanninga, N., and Bramhill, D. (1997). Bacterial cell division. Annu. Rev. Cell Dev. Biol. 13: 395–424.
Chang, B. Y., and Doi, R. H. (1993) Effects of amino acid substitutions in the promoter -10 binding region of the on growth of Bacillus subtilis. J. Bacteriol. 175: 2470-2474.
Chang, B. Y., Liao, C. T., Wen, Y. D., and Wang, W. H. (1997) The temperature sensitivity of Bacillus subtilis DB1005 is due to insufficient activity, rather than insufficient concentration, of the mutantσA factor.
Microbiology. 143: 1299-1308.
Cha, J.-H., and Stewart, G. C. (1997). The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 179: 1671–1683.
Chen, J. C., and Beckwith, J. (2001). FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 42: 395–413.
Cordell, S. C., Anderson, R. E., and Lowe, J. (2001). Crystal structure of the bacterial cell division inhibitor MinC. EMBO J. 20: 2454–2461.
Daniel, R. A., and Errington, J. (2000a). Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol. Microbiol. 36: 278–289.
Daniel, R. A., Harry, E. J., and Errington, J. (2000b). Role of penicillin-binding protein PBP-2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol. Microbiol. 35: 299–311.
Daniel, R. A., Harry, E. J., Katis, V. L., Wake, R. G., and Errington, J. (1998). Characterization of the essential cell division gene ftsL (yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29: 593–604.
Daniel, R. A., Williams, A. M., and Errington, J. (1996). A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J. Bacteriol. 178: 2343–2350.
Dewar, S. J., Begg, K. J., and Donachie, W. D. (1992). Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J. Bacteriol. 174: 6314–6316.
Edwards, D. H., and Errington, J. (1997). The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905–915.
Erickson, H. P., Taylor, D. W., Taylor, K. A., and Bramhill, D. (1996). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologues of tubulin polymers. Proc. Natl. Acad. Sci. USA 93: 519–523.
Errington, J., and Daniel, R. A. (2001). Cell division during growth and sporulation, p. 97–109. In L. Sonenshein, R. Losick, J. A. Hoch, (ed.), Bacillus subtilis and its relatives: from genes to cells. American Society for Microbiology, Washington, D.C.
Errington, J., Daniel, R. A., and Scheffers, D. (2003) Cytokinesis in bacteria. Microbio. Mol. Bio. Rev. 67: 52–65.
Feucht, A., Lucet, I., Yudkin, M. D., and Errington, J. (2001). Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40: 115–125.
Harry, E. J. (2001). Bacterial cell division: regulating Z-ring formation. Mol. Microbiol. 40: 795–803.
Harry, E. J., and Wake, R. G. (1989). Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. J. Bacteriol. 171: 6835–6839.
Harry, E. J., and Wake, R. G. (1997). The membrane-bound cell division protein DivIB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 25: 275–283.
Helmann, J. D., Marquez, L. M., and Chamberlin, M. J. (1988). Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J. Bacteriol. 170: 1568–1574
Horsburgh, G. J., Atrih, A., Williamson, M. P., and Foster, S. J. (2003). LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry. 42: 257-64.
Hu, Z., and Lutkenhaus, J. (2000). Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J. Bacteriol. 182: 3965–3971.
Ishikawa, S., Hara, Y., Ohnishi, R., and Sekiguchi, J. (1998).Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J. Bacteriol. 180: 2549–2555.
Jacobs, C., and Shapiro, L. (1999). Bacterial cell division: A moveable feast. Proc. Natl. Acad. Sci. USA 96: 5891–5893
Jones, C. J., Macnab, R. M., Okino, H., and Aizawa, S. I. (1990). Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212: 377–387
Katis, V. L., Harry, E. J., and Wake, R. G. (1997). The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol. Microbiol. 26: 1047–1055.
Katis, V. L., Wake, R. G., and Harry, E. J. (2000). Septal localization of the membrane-bound division proteins of Bacillus subtilis DivIB and DivIC is codependent only at high temperatures and requires FtsZ. J. Bacteriol. 182: 3607–3611.
Kuroda, A., and Sekiguchi, J. (1993). High-level transcription of the
major Bacillus subtilis autolysin operon depends on expression of
the sigma D gene and is affected by a sin (flaD) mutation. J.
Bacteriol. 175: 795–801.
Lazarevic, V., Margot, P., Soldo, B., and Karamata, D. (1992).
Sequencing and analysis of the Bacillus subtilis lytRABC
divergon: a regulatory unit encompassing the structural genes of
the N-acetylmuramoyl-l-alanine amidase and its modifier. J. Gen.
Microbiol. 138: 1949–1961.
Liao, C. T., Wen, Y. D., Wang, W. H., Tsai, S. C., Doi, R. H., and Chang, B. Y. (1997). The importance of a proper helical structure in the promoter -10 binding region to Bacillus subtilisσA structure and function. J. Biochem. 122: 911–917
Liao, C. T., Wang, W. H., Yang, H. S., Chen, J. P., and Chang, B. Y. (1999). Differential and additive effects of the three conserved isoleucine residues in the promoter -10 binding region on Bacillus subtilisσA structure and function. J. Biochem. 126: 111–119
Levin, P. A., and Schwartz, R. L., and Grossman, A. D. (2001). Polymer stability plays an important role in the positional regulation of FtsZ. J. Bacteriol. 183: 5449–5452.
Levin, P. A., Shim, J. J., and Grossman, A. D. (1998). Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis
J. Bacteriol. (1998) 180: 6048-6051
Levin, P. A., Kurtser, I. G., and Grossman, A. D. (1999). Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96: 9642–9647.
Levin, P. A., and Losick, R. (1996). Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Devol. 10: 478–488.
Levin, P. A., and Margolis, P. S., Setlow, P., Losick, R., and Sun, D. (1992). Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174: 6717–6728.
Margot, P., and Karamata, D. (1992). Identification of the structural
genes for N-acetylmuramoyl-l-alanine amidase and its modifier
in Bacillus subtilis 168: inactivation of these genes by insertional
mutagenesis has no effect on growth or cell separation. Mol. Gen.
Genet. 232: 359–366.
Margot, P., Mauel, C., and Karamata, D. (1994). The gene of the N–acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase
not involved in vegetative cell autolysis. Mol. Microbiol. 12: 535–545.
Margot, P., Whalen, M., Gholamhoseinian, A., Piggot, P., and Karamata, D. (1998). The lytE gene of Bacillus subtilis 168
encodes a cell wall hydrolase. J. Bacteriol. 180: 749–752.
Margot, P., Pagni, M., and Karamata, D. (1999). Bacillus subtilis 168
gene lytF encodes aγ-δ–glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD. Microbiology 145: 57–65.
Marquez, L., Helmann, J. D., Ferrari, E., Parker, H. M., Ordal, G. W., and Chamberlin, M. J. (1990). Studies ofσD-dependent functions in Bacillus subtilis. J. Bacteriol. 172: 3435–3443
Marston, A. L., and Errington, J. (1999). Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33: 84–96.
Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E., and Errington, J. (1998). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Devl. 12: 3419–3430.
Mulder, E., and Woldringh, C. L. (1989). Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171: 4303–4314.
Ohnishi, R., Ishikawa, S., and Sekiguchi, J. (1999). Peptidoglycan
hydrolase LytF plays a role in cell separation with CwlF during
vegetative growth of Bacillus subtilis. J. Bacteriol. 181: 3178–3184.
Rashid, M. H., Mori, M., and Sekiguchi, J. (1995). Glucosaminidase
of Bacillus subtilis : cloning, regulation, primary structure and
biochemical characterisation. Microbiology 141: 2391–2404.
Rowland, S. L., Katis, V. L., Partridge, S. R., and Wake, R. G. (1997). DivIB, FtsZ and cell division in Bacillus subtilis. Mol. Microbiol. 23: 295–302
Rothfield, L. I., and Justice, S. S. (1997). Bacterial cell division:The cycle of the ring. Cell 88: 581–584
Sievers, J., and Errington, J. (2000). The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol. Microbiol. 36: 846–855.
Smith, T. J., Blackman, S. A., and Foster, S. J. (2000). Autolysins of Bacillus subtilis:multiple enzyme with multiple function. Microbiology 146: 249–262
Smith, T. J., and Foster, S. J. (1995). Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J. Bacteriol. 177: 3855–3862.
Szeto, T. H., Rowland, S. L., and King, G. F. (2001). The dimerizationfunction of MinC resides in a structurally autonomous C-terminal domain. J. Bacteriol. 183: 6684–6687.
Wang, X., and Lutkenhaus, J. (1993). The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. Mol. Microbiol. 9: 435–442.
West, J. T., Estacio, W., and Magana, L. M. (2000). Relative role of the fla/che PA, PD-3, and PsigD promoters in regulating motility and sigD expression in Bacillus subtilis. J. Bacteriol. 182: 4841–4848.
Woldringh, C. L., Mulder, E., Valkenburg, J. A., Wientjes, F. B., Zaritsky, A., and Nanninga, N. (1990). Role of the nucleoid in the toporegulation of division. Res. Microbiol. 141: 39–49.
Wu, L. J., Franks, A. H., and Wake, R. G. (1995). Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. J. Bacteriol. 177: 5711–5715.
Yanouri, A., Daniel, R. A., Errington, J., and Buchanan, C. E. (1993). Cloning and sequencing of the cell division gene pbpB, which encodes penicillinbinding protein 2B in Bacillus subtilis. J. Bacteriol. 175: 7604–7616.
Chu, C. H. (2003). Characterization of a Bacillus subtilis sigA mutant with filamentous phenotype.
Lieberman, PM., and Berk, AJ. (1994). A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8: 995-1006.
Chi, T., Lieberman, P., Ellwood, K., and Carey, M. (1995). A general mechanism for transcriptional synergy by eukaryotic activators. Nature. 377:254-7.
Sauer, F., Hansen, SK., and Tjian, R. (1995). Multiple TAFIIs directing synergistic activation of transcription. Science. 270:1783-8.
Tanaka, M. (1996). Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc Natl Acad Sci U S A. 93:4311-5.
Joung, JK., Koepp, DM., and Hochschild, A. (1994). Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein. Science. 265:1863-6.
Busby, S., West, D., Lawes, M., Webster, C., Ishihama, A., and Kolb, A. (1994). Transcription activation by the Escherichia coli cyclic AMP receptor protein. Receptors bound in tandem at promoters can interact synergistically. J Mol Biol. 241:341-52.
Amati, G., Bisicchia, P., and Galizzi, A. (2004). DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J. Bacteriol. 186:6003-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top