|
Addinall, S. G., Bi, E., and Lutkenhaus, J. (1996). FtsZ ring formation in fts mutants. J. Bacteriol. 178: 3877–3884. Bara´k, I., Prepiak, P., and Schmeisser, F. (1998). MinCD proteins control the septation process during sporulation of Bacillus subtilis. J. Bacteriol. 180: 5327–5333. Berotero, M. G., Gonzales, B., Tarricone, C., Ceciliani, F., and Galizzi, A. (1999). Overproduction and characterization of the Bacillus subtilis anti-sigma factor FlgM. J. Biol. Chem. 274: 12103–12107. Bi, E., and Lutkenhaus, J. (1993). Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175: 1118–1125. Blackman, S. A., Smith, T. J., and Foster, S. J. (1998). The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144: 73–82. Den Blaauwen T., Buddelmeijer, N., Aarsman, M. E., Hameete, C.M., Nanninga, N., and Bramhill, D. (1997). Bacterial cell division. Annu. Rev. Cell Dev. Biol. 13: 395–424. Chang, B. Y., and Doi, R. H. (1993) Effects of amino acid substitutions in the promoter -10 binding region of the on growth of Bacillus subtilis. J. Bacteriol. 175: 2470-2474. Chang, B. Y., Liao, C. T., Wen, Y. D., and Wang, W. H. (1997) The temperature sensitivity of Bacillus subtilis DB1005 is due to insufficient activity, rather than insufficient concentration, of the mutantσA factor. Microbiology. 143: 1299-1308. Cha, J.-H., and Stewart, G. C. (1997). The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 179: 1671–1683. Chen, J. C., and Beckwith, J. (2001). FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 42: 395–413. Cordell, S. C., Anderson, R. E., and Lowe, J. (2001). Crystal structure of the bacterial cell division inhibitor MinC. EMBO J. 20: 2454–2461. Daniel, R. A., and Errington, J. (2000a). Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol. Microbiol. 36: 278–289. Daniel, R. A., Harry, E. J., and Errington, J. (2000b). Role of penicillin-binding protein PBP-2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol. Microbiol. 35: 299–311. Daniel, R. A., Harry, E. J., Katis, V. L., Wake, R. G., and Errington, J. (1998). Characterization of the essential cell division gene ftsL (yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29: 593–604. Daniel, R. A., Williams, A. M., and Errington, J. (1996). A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J. Bacteriol. 178: 2343–2350. Dewar, S. J., Begg, K. J., and Donachie, W. D. (1992). Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J. Bacteriol. 174: 6314–6316. Edwards, D. H., and Errington, J. (1997). The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905–915. Erickson, H. P., Taylor, D. W., Taylor, K. A., and Bramhill, D. (1996). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologues of tubulin polymers. Proc. Natl. Acad. Sci. USA 93: 519–523. Errington, J., and Daniel, R. A. (2001). Cell division during growth and sporulation, p. 97–109. In L. Sonenshein, R. Losick, J. A. Hoch, (ed.), Bacillus subtilis and its relatives: from genes to cells. American Society for Microbiology, Washington, D.C. Errington, J., Daniel, R. A., and Scheffers, D. (2003) Cytokinesis in bacteria. Microbio. Mol. Bio. Rev. 67: 52–65. Feucht, A., Lucet, I., Yudkin, M. D., and Errington, J. (2001). Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40: 115–125. Harry, E. J. (2001). Bacterial cell division: regulating Z-ring formation. Mol. Microbiol. 40: 795–803. Harry, E. J., and Wake, R. G. (1989). Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. J. Bacteriol. 171: 6835–6839. Harry, E. J., and Wake, R. G. (1997). The membrane-bound cell division protein DivIB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 25: 275–283. Helmann, J. D., Marquez, L. M., and Chamberlin, M. J. (1988). Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J. Bacteriol. 170: 1568–1574 Horsburgh, G. J., Atrih, A., Williamson, M. P., and Foster, S. J. (2003). LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry. 42: 257-64. Hu, Z., and Lutkenhaus, J. (2000). Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J. Bacteriol. 182: 3965–3971. Ishikawa, S., Hara, Y., Ohnishi, R., and Sekiguchi, J. (1998).Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J. Bacteriol. 180: 2549–2555. Jacobs, C., and Shapiro, L. (1999). Bacterial cell division: A moveable feast. Proc. Natl. Acad. Sci. USA 96: 5891–5893 Jones, C. J., Macnab, R. M., Okino, H., and Aizawa, S. I. (1990). Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212: 377–387 Katis, V. L., Harry, E. J., and Wake, R. G. (1997). The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol. Microbiol. 26: 1047–1055. Katis, V. L., Wake, R. G., and Harry, E. J. (2000). Septal localization of the membrane-bound division proteins of Bacillus subtilis DivIB and DivIC is codependent only at high temperatures and requires FtsZ. J. Bacteriol. 182: 3607–3611. Kuroda, A., and Sekiguchi, J. (1993). High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J. Bacteriol. 175: 795–801. Lazarevic, V., Margot, P., Soldo, B., and Karamata, D. (1992). Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949–1961. Liao, C. T., Wen, Y. D., Wang, W. H., Tsai, S. C., Doi, R. H., and Chang, B. Y. (1997). The importance of a proper helical structure in the promoter -10 binding region to Bacillus subtilisσA structure and function. J. Biochem. 122: 911–917 Liao, C. T., Wang, W. H., Yang, H. S., Chen, J. P., and Chang, B. Y. (1999). Differential and additive effects of the three conserved isoleucine residues in the promoter -10 binding region on Bacillus subtilisσA structure and function. J. Biochem. 126: 111–119 Levin, P. A., and Schwartz, R. L., and Grossman, A. D. (2001). Polymer stability plays an important role in the positional regulation of FtsZ. J. Bacteriol. 183: 5449–5452. Levin, P. A., Shim, J. J., and Grossman, A. D. (1998). Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis J. Bacteriol. (1998) 180: 6048-6051 Levin, P. A., Kurtser, I. G., and Grossman, A. D. (1999). Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96: 9642–9647. Levin, P. A., and Losick, R. (1996). Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Devol. 10: 478–488. Levin, P. A., and Margolis, P. S., Setlow, P., Losick, R., and Sun, D. (1992). Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174: 6717–6728. Margot, P., and Karamata, D. (1992). Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol. Gen. Genet. 232: 359–366. Margot, P., Mauel, C., and Karamata, D. (1994). The gene of the N–acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12: 535–545. Margot, P., Whalen, M., Gholamhoseinian, A., Piggot, P., and Karamata, D. (1998). The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J. Bacteriol. 180: 749–752. Margot, P., Pagni, M., and Karamata, D. (1999). Bacillus subtilis 168 gene lytF encodes aγ-δ–glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD. Microbiology 145: 57–65. Marquez, L., Helmann, J. D., Ferrari, E., Parker, H. M., Ordal, G. W., and Chamberlin, M. J. (1990). Studies ofσD-dependent functions in Bacillus subtilis. J. Bacteriol. 172: 3435–3443 Marston, A. L., and Errington, J. (1999). Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33: 84–96. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E., and Errington, J. (1998). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Devl. 12: 3419–3430. Mulder, E., and Woldringh, C. L. (1989). Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171: 4303–4314. Ohnishi, R., Ishikawa, S., and Sekiguchi, J. (1999). Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J. Bacteriol. 181: 3178–3184. Rashid, M. H., Mori, M., and Sekiguchi, J. (1995). Glucosaminidase of Bacillus subtilis : cloning, regulation, primary structure and biochemical characterisation. Microbiology 141: 2391–2404. Rowland, S. L., Katis, V. L., Partridge, S. R., and Wake, R. G. (1997). DivIB, FtsZ and cell division in Bacillus subtilis. Mol. Microbiol. 23: 295–302 Rothfield, L. I., and Justice, S. S. (1997). Bacterial cell division:The cycle of the ring. Cell 88: 581–584 Sievers, J., and Errington, J. (2000). The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol. Microbiol. 36: 846–855. Smith, T. J., Blackman, S. A., and Foster, S. J. (2000). Autolysins of Bacillus subtilis:multiple enzyme with multiple function. Microbiology 146: 249–262 Smith, T. J., and Foster, S. J. (1995). Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J. Bacteriol. 177: 3855–3862. Szeto, T. H., Rowland, S. L., and King, G. F. (2001). The dimerizationfunction of MinC resides in a structurally autonomous C-terminal domain. J. Bacteriol. 183: 6684–6687. Wang, X., and Lutkenhaus, J. (1993). The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. Mol. Microbiol. 9: 435–442. West, J. T., Estacio, W., and Magana, L. M. (2000). Relative role of the fla/che PA, PD-3, and PsigD promoters in regulating motility and sigD expression in Bacillus subtilis. J. Bacteriol. 182: 4841–4848. Woldringh, C. L., Mulder, E., Valkenburg, J. A., Wientjes, F. B., Zaritsky, A., and Nanninga, N. (1990). Role of the nucleoid in the toporegulation of division. Res. Microbiol. 141: 39–49. Wu, L. J., Franks, A. H., and Wake, R. G. (1995). Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. J. Bacteriol. 177: 5711–5715. Yanouri, A., Daniel, R. A., Errington, J., and Buchanan, C. E. (1993). Cloning and sequencing of the cell division gene pbpB, which encodes penicillinbinding protein 2B in Bacillus subtilis. J. Bacteriol. 175: 7604–7616. Chu, C. H. (2003). Characterization of a Bacillus subtilis sigA mutant with filamentous phenotype. Lieberman, PM., and Berk, AJ. (1994). A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8: 995-1006. Chi, T., Lieberman, P., Ellwood, K., and Carey, M. (1995). A general mechanism for transcriptional synergy by eukaryotic activators. Nature. 377:254-7. Sauer, F., Hansen, SK., and Tjian, R. (1995). Multiple TAFIIs directing synergistic activation of transcription. Science. 270:1783-8. Tanaka, M. (1996). Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc Natl Acad Sci U S A. 93:4311-5. Joung, JK., Koepp, DM., and Hochschild, A. (1994). Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein. Science. 265:1863-6. Busby, S., West, D., Lawes, M., Webster, C., Ishihama, A., and Kolb, A. (1994). Transcription activation by the Escherichia coli cyclic AMP receptor protein. Receptors bound in tandem at promoters can interact synergistically. J Mol Biol. 241:341-52. Amati, G., Bisicchia, P., and Galizzi, A. (2004). DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J. Bacteriol. 186:6003-14.
|