跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俞蓓
研究生(外文):Yu-Pei Huang
論文名稱:阿拉伯芥E3蛋白(APC8、AtRING3和AtRING4)基因之特性與功能性分析
論文名稱(外文):Characterization and Functional Analysis of E3 protein (APC8, AtRING3 and AtRING4 ) genes from Arabidopsis thaliana
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:阿拉伯芥E3蛋白
外文關鍵詞:Arabidopsis thalianaE3 proteinAPC8AtRING3AtRING4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
E3 RING finger的基因在ubiquitin蛋白質降解過程以及控制植物生長發育和分化扮演重要的角色。APC8是E3蛋白複合體中的其中一個成員,控制有絲分裂的進行以及完成。APC8基因擁有TPR-repeat-containing domain,它的功能是蛋白質與蛋白質之間的交互作用。雖然APC/C在真菌和動物中廣泛被研究,但是在植物中的功能仍未知。實驗發現一個阿拉伯芥T-DNA突變株,其外表型呈現不孕和不正常的葉片。透過inverse PCR (IPCR)的檢查發現T-DNA插在APC8基因的5’端調控區,距離起始密碼有199 bp。有趣的是所有的apc8突變植株皆以heterozygotes型存在,但其APC8 mRNA和蛋白質表現量高於正常野生阿拉伯芥。這樣的結果顯示apc8突變外表型有可能是因為T-DNA插入造成APC8基因被活化所致,為了證明此可能性,我們利用35S promoter表現APC8 cDNA sense和antisense並分析外表型。結果發現antisense的植物外表型與野生型並無明顯差異,而sense的植物外表型則相似於apc8突變的植株。近一步研究發現35S::APC8 antisense可以降低apc8突變植株中APC8的表現量,並減緩其不孕的現象。接著promoter::GUS轉基因植物分析試驗顯示,290 bp長度的APC8 promoter 片段所驅動GUS基因的表現量高於410 bp 或 1500 bp長度片段所驅動。此結果說明在原始APC8 promoter於起始密碼前199 到 410 bp間可能含一負調控區,會抑制APC8之表現,在apc8突變植株中這個區域被T-DNA插入,所以阻止了負調控子之結合在正常的區域,造成APC8表現提高而形成突變。除了APC8 這個基因外,本研究包括另外兩個E3 RING finger 基因 AtRING3 和 AtRING4的特性分析,其中AtRING3 和 AtRING4 mRNA在成株的葉和花中表現量較高。為了研究AtRING3 和 AtRING4的功能,我們利用yeast two-hybrid assay,釣取到三個與AtRING4有結合影響的蛋白,分別是COR47, At2g17190 與 CSN5B,其中CSN5B亦與AtRING3結合。
E3 RING finger genes played key roles in the ubiquitin-mediated proteolysis and controlled many processes of plant development and differentiation. APC8 is one of the multiple-subunit of E3 protein that controls important transitions during mitotic progression and exit. A TPR-repeat-containing domain that controlled the protein-protein interaction was identified in APC8 protein. Although APC/C has been extensively studied in both fungal and animal, the structure and function of plant APC/C’s remained unexplored. An Arabidopsis T-DNA insertional mutant caused germ abortion and abnormal leaf formation was characterized in this research. Through inverse PCR (IPCR), it has been found that the T-DNA was inserted in the 199 bp of 5’ regulation regions from start codon of APC8 gene. Interestingly, all the apc8 mutants are heterozygotes for T-DNA insertion and the APC8 mRNA and protein were up-regulated in the apc8 mutants . This result revealed that the apc8 mutant phenotype may be caused by the activation of APC8 gene after T-DNA insertion. To explore this possibility, sense and antisense of APC8 cDNA driven by 35S promoter were transformed into Arabidopsis and phenotypic analyzed. The result indicated that antisense plants were phenotypically indistinguishable from wild-type plants whereas sense plants exhibited similar phenotype resembled T-DNA insertional apc8 mutants. Furthermore, 35S::APC8 antisense down-regulated the APC8 expression and rescued the germ abortion in apc8 mutants. Further promoter analysis showed that transgenic plants contained 290 bp length of APC8 promoter fusing with GUS exhibited much higher GUS expression and GUS activity than the transgenic plants contained 410 bp and 1500 bp length of APC8 promoter fusing with GUS. Our results revealed that a negative regulator may bind to the region between 199 to 410 bp of APC8 promoter and suppressed the APC8 expression in wild-type plant. This region was interrupted by the T-DNA insertion in apc8 mutants and prohibited the binding of negative regulator resulting in the increase of APC8 expression in the mutants. In addition to APC8 gene, two E3 RING finger genes, AtRING3 and AtRING4 were also cloned and characterized. AtRING3 and AtRING4 mRNA were expressed in leaf and flowers. To investigate the function of AtRING3 and AtRING4 action, yeast two-hybrid assays was performed. Three proteins (COR47, At2g17190 and CSN5B) that interacted with AtRING4 and one protein (CSN5B) that interacted with RING3 were identified.
目次

總摘要(中文)
總摘要(英文)

第一章阿拉伯芥中apc8 突變株之定性分析

摘要 ---------------------------------------------------------------------------------------------2
壹、前言-----------------------------------------------------------------------------------------3
貳、材料與方法--------------------------------------------------------------------------------9
参、結果----------------------------------------------------------------------------------------18
一、apc8 突變株性狀分析---------------------------------------------------------------18
二、IPCR結果分析-----------------------------------------------------------------------18
三、apc8 突變株基因型的分析---------------------------------------------------------18
四、apc8 突變株與野生阿拉伯芥中,APC8 基因表現量的比較---------------19
五、apc8 突變株與野生阿拉伯芥中,APC8 蛋白表現量的比較---------------19
六、APC8 的轉基因植物功能性分析------------------------------------------------- 20
(1) 35S:: APC8與35S:: APC8 antisense構築體之構築--------------------------20
(2)35S:: APC8 轉入阿拉伯芥野生型性狀分析-----------------------------------21
(3) 35S:: APC8轉基因植物的基因表現分析----------------------------------------21
(4)野生阿拉伯芥、apc8 突變株及.35S:: APC8轉殖株中APC8的表現量----
分析-----------------------------------------------------------------------------------------22
(5) 35S:: APC8 antisense轉入apc8 突變株型性狀分析與表現量分析--------22
七、APC8 5端的調控區的分析--------------------------------------------------------------23
(1)選殖三段不同長度APC8基因的啟動子---------------------------------------- 23
(2) APC8 promoter 290bp::GUS、APC8 promoter 410bp::GUS與APC8 promoter 1500bp::GUS的轉殖株,GUS染色結果與GUS基因表現量分析----------24
八、apc8 突變株、野生阿拉伯芥中及35S:: APC8轉殖株中,APC2基因和 APC11基因表現量的比較-----------------------------------------------------------------------25
肆、討論-----------------------------------------------------------------------------------------27
伍、參考文獻-----------------------------------------------------------------------------------31
陸、圖表---------------------------------------------------------------------------------------35






第二章 阿拉伯芥RING finger基因(AtRING3及AtRING4)之特性與功能性分析

摘要 ----------------------------------------------------------------------------------------------62
壹、前言-----------------------------------------------------------------------------------------63
貳、材料與方法--------------------------------------------------------------------------------69
参、結果-----------------------------------------------------------------------------------------73
一、AtRING3、AtRING4與AtRING1基因資訊的比較----------------------------73
二、AtRING3、AtRING4於阿拉伯芥野生型的表現情形--------------------------73
三、AtRING3、AtRING4之酵母雙雜合( yeast two-hybrid )分析-----------------74
四、AtRING3與AtRING4轉基因植物的性狀分析----------------------------------75
五、AtRING3與AtRING4 啟動子(promoter)的選殖---------------------------------76
肆、討論------------------------------------------------------------------------------------------78
伍、參考文獻------------------------------------------------------------------------------------82
陸、圖表------------------------------------------------------------------------------------------87

圖表目次

--表1-1 第一章PCR反應所使用引子之序列-----------------------------------------35
--圖1-1 野生型阿拉伯芥與apc8突變株之性狀分析--------------------------------37
--圖1-2 野生型阿拉伯芥與apc8突變株之性狀分析--------------------------------38
--圖1-3 IPCR鑑定結果與apc8突變株基因型分析----------------------------------39
--圖1-4 推測apc8突變株同型接合子(homozygote)會致死-------------------------40
--圖1-5 野生型阿拉伯芥與apc8突變株,APC8 基因表現量的比較------------41
--圖1-6 野生型阿拉伯芥與apc8突變株,APC8 蛋白表現量的比較 -----------42
--圖1-7 以PCR方法選殖APC8 (At3g48150)cDNA----------------------------------43
--圖1-8 35S:: APC8 sense 與 antisense clone之確認---------------------------------44
--圖1-9 35S::APC8轉殖阿拉伯芥野生型之性狀分析--------------------------------45
--圖1-10 35S:: sense APC8轉基因植物的基因表現情形------------------------------46
--圖1-11 野生型阿拉伯芥、 apc8突變株與35S:: sense APC8轉基因植物的APC8表現情形---------------------------------------------------------------------------47
--圖1-12 偵測35S::antiAPC8/apc8轉殖株APC8表現量與性狀分析--------------48
--圖1-13 選殖三段不同長度APC8基因的啟動子(promoter)之確認----------------49
--圖1-14 三段不同長度APC8基因的啟動子融合報導基因分析--------------------50
--圖1-15 APC2和APC11在野生阿拉伯芥、 apc8 突變株中及 35S:: APC8轉殖株中的表現量分析----------------------------------------------------------------51
--圖1-16 阿拉伯芥T-DNA insertion mutant(apc8 mutant)的模式圖------------------52
--附表1-1 分裂的酵母菌、脊椎動物以及阿拉伯芥APC/C的組成-------------------53
--附圖1-1 ubiquitin (Ub)/26S proteasome pathway示意圖-----------------------------54
--附圖1-2 apc2 insertion mutant 的性狀與T-DNA插入的位子----------------------55
--附圖1-3 APC/C在cell cycle的功能-----------------------------------------------------56
--附圖1-4 pGEM®-T Easy vector之載體圖譜--------------------------------------------57
--附圖1-5 pBI121之載體圖譜--------------------------------------------------------------58
--附圖1-6 pBI101 和pEpyon-01K之載體圖譜------------------------------------------59
--附圖1-7 pEpyon-12H之載體圖譜--------------------------------------------------------60
--表2-1 第二章PCR反應所使用引子之序列-------------------------------------------87
--表2-2 yeast two-hybrid實驗篩選出與AtRING1、AtRING3和AtRING4有交互作用的蛋白表-------------------------------------------------------------------89
--圖2-1 阿拉伯芥AtRING1(At3g10910 )mRNA序列及相對應氨基酸------------90
--圖2-2 阿拉伯芥AtRING3(At5g05280)mRNA序列及相對應氨基酸-------------91
--圖2-3 阿拉伯芥AtRING4(At5g01880)mRNA序列及相對應氨基酸-------------92
--圖2-4 AtRING1、AtRING3與AtRING4氨基酸序列比對--------------------------93
--圖2-5 AtRING基因之演化樹圖譜------------------------------------------------------94
--圖2-6 利用RT-PCR偵測AtRING3和AtRING4基因於野生型阿拉伯芥中的表現情況-------------------------------------------------------------------------------95
--圖2-7 用於yeast two-hybrid實驗之AtRING3和AtRING4基因的ORF片段之分子選殖-------------------------------------------------------------------------------96
--圖2-8 酵母菌中pGBKT7 構築體鑑定及高營養篩選篩選出與AtRING3、AtRING4交互作用的蛋白------------------------------------------------------97
--圖2-9 35::AtRING3 和35::AtRING4突變株之性狀分析---------------------------98
--圖2-10 選殖AtRING3和AtRING4基因的啟動子(promoter)之確認--------------99
--圖2-11 與AtRING1、AtRING3與AtRING4有相互作用的蛋白模式圖--------100
--附圖2-1 (a)HECT、(b)RING/U-box、(c)SCF及(d)anaphase-promoting complex(APC)E3蛋白接合酵素的構造圖-----------------------------------101
--附圖2-2 35S::AtRING1 antisense植株之異常性狀-----------------------------------102
--附圖2-3 35S::Cor47-histag sense植株之異常性狀-----------------------------------103
--附圖2-4 35S::STZ sense 植株之異常性狀---------------------------------------------104
--附圖2-5 SCF complex受CSN及CAND1調控的示意圖--------------------------105
--附圖2-6 cullins 的neddylation與deneddylation示意圖----------------------------106
--附圖2-7 阿拉伯芥CSN5A和CSN5B的點突變對於cullin neddylation 和植物生長外表型的影響-------------------------------------------------------------107
--附圖2-8 pGBKT7之載體圖譜-----------------------------------------------------------108
--附圖2-9 pGAD10之載體圖譜------------------------------------------------------------109
--附圖2-10 (A)Yeast two-hybrid系統原理示意圖。(B)AH109及Y187兩種Yeast strain所使用的報導基因-----------------------------------------------------110
Bachmair, A., Novatchkova, M., Potuschak, T. and Eisenhaber, F., 2001. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci, 6(10): 463-70.
Blatch, G.L. and Lassle, M., 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays, 21(11): 932-9.
Blilou, I. et al., 2002. The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev, 16(19): 2566-75.
Capron, A., Okresz, L. and Genschik, P., 2003a. First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci, 8(2): 83-9.
Capron, A. et al., 2003b. The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. Plant Cell, 15(10): 2370-82.
Cebolla, A. et al., 1999. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. Embo J, 18(16): 4476-84.
Cooper, K.F., Mallory, M.J., Egeland, D.B., Jarnik, M. and Strich, R., 2000. Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc Natl Acad Sci U S A, 97(26): 14548-53.
Criqui, M.C. and Genschik, P., 2002. Mitosis in plants: how far we have come at the molecular level? Curr Opin Plant Biol, 5(6): 487-93.
Deshaies, R.J., 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol, 15: 435-67.
Eloy, N.B., Coppens, F., Beemster, G.T., Hemerly, A.S. and Ferreira, P.C., 2006. The Arabidopsis anaphase promoting complex (APC): regulation through subunit availability in plant tissues. Cell Cycle, 5(17): 1957-65.
Feldman, R.M., Correll, C.C., Kaplan, K.B. and Deshaies, R.J., 1997. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell, 91(2): 221-30.
Fu, H. et al., 1999. Structure and functional analysis of the 26S proteasome subunits from plants. Mol Biol Rep, 26(1-2): 137-46.
Genschik, P., Criqui, M.C., Parmentier, Y., Derevier, A. and Fleck, J., 1998. Cell cycle -dependent proteolysis in plants. Identification Of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor mg132. Plant Cell, 10(12): 2063-76.
Gmachl, M., Gieffers, C., Podtelejnikov, A.V., Mann, M. and Peters, J.M., 2000. The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc Natl Acad Sci U S A, 97(16): 8973-8.
Gorr, I.H., Boos, D. and Stemmann, O., 2005. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol Cell, 19(1): 135-41.
Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M., 2001. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature, 414(6861): 271-6.
Grossberger, R. et al., 1999. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. J Biol Chem, 274(20): 14500-7.
Hames, R.S., Wattam, S.L., Yamano, H., Bacchieri, R. and Fry, A.M., 2001. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. Embo J, 20(24): 7117-27.
Harper, J.W., Burton, J.L. and Solomon, M.J., 2002. The anaphase-promoting complex: it''s not just for mitosis any more. Genes Dev, 16(17): 2179-206.
Hershko, A. and Ciechanover, A., 1998. The ubiquitin system. Annu Rev Biochem, 67: 425-79.
Irniger, S., Piatti, S., Michaelis, C. and Nasmyth, K., 1995. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell, 81(2): 269-78.
Jallepalli, P.V. et al., 2001. Securin is required for chromosomal stability in human cells. Cell, 105(4): 445-57.
Joubes, J. and Chevalier, C., 2000. Endoreduplication in higher plants. Plant Mol Biol, 43(5-6): 735-45.
Juang, Y.L. et al., 1997. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science, 275(5304): 1311-4.
King, R.W. et al., 1995. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell, 81(2): 279-88.
Lupas, A., Baumeister, W. and Hofmann, K., 1997. A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (anaphase-promoting complex). Trends Biochem Sci, 22(6): 195-6.
Mei, J., Huang, X. and Zhang, P., 2001. Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Curr Biol, 11(15): 1197-201.
Morgan, D.O., 1999. Regulation of the APC and the exit from mitosis. Nat Cell Biol, 1(2): E47-53.
Nasmyth, K., 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet, 35: 673-745.
Peter, M. et al., 2001. The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nat Cell Biol, 3(1): 83-7.
Peters, J.M., 1998. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol, 10(6): 759-68.
Peters, J.M., 2006. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 7(9): 644-56.
Peters, J.M., King, R.W., Hoog, C. and Kirschner, M.W., 1996. Identification of BIME as a subunit of the anaphase-promoting complex. Science, 274(5290): 1199-201.
Petersen, B.O. et al., 2000. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev, 14(18): 2330-43.
Pfleger, C.M. and Kirschner, M.W., 2000. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev, 14(6): 655-65.
Renaudin, J.P.e.a., 1998. characterization and classification of plant cyclin sequences related to A- and B-type cyclins. in plant cell division: 67-98.
Rogg, L.E. and Bartel, B., 2001. Auxin signaling: derepression through regulated proteolysis. Dev Cell, 1(5): 595-604.
Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J. and Harper, J.W., 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell, 91(2): 209-19.
Smalle, J. and Vierstra, R.D., 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 55: 555-90.
Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. and Kirschner, M.W., 2001. Dual inhibition of sister chromatid separation at metaphase. Cell, 107(6): 715-26.
Sudakin, V. et al., 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell, 6(2): 185-97.
Wang, Z., Yu, R. and Melmed, S., 2001. Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol Endocrinol, 15(11): 1870-9.
Willemsen, V., Wolkenfelt, H., de Vrieze, G., Weisbeek, P. and Scheres, B., 1998. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development, 125(3): 521-31.
Yamamoto, A., Guacci, V. and Koshland, D., 1996. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J Cell Biol, 133(1): 85-97.
Yang, W.C. and Sundaresan, V., 2000. Genetics of gametophyte biogenesis in Arabidopsis. Curr Opin Plant Biol, 3(1): 53-7.
Yoon, H.J. et al., 2002. Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr Biol, 12(23): 2048-54.
Yu, H. et al., 1998. Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science, 279(5354): 1219-22.
Zachariae, W. and Nasmyth, K., 1999. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev, 13(16): 2039-58.
Zachariae, W. et al., 1998. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science, 279(5354): 1216-9.
Bachmair, A., Novatchkova, M., Potuschak, T. and Eisenhaber, F., 2001. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci, 6(10): 463-70.
Bae, M.K. et al., 2002. Jab1 interacts directly with HIF-1alpha and regulates its stability. J Biol Chem, 277(1): 9-12.
Chamovitz, D.A. et al., 1996. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell, 86(1): 115-21.
Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q. and Zhu, J.K., 2006. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A, 103(21): 8281-6.
Freilich, S. et al., 1999. The COP9 signalosome is essential for development of Drosophila melanogaster. Curr Biol, 9(20): 1187-90.
Fu, H. et al., 1999. Structure and functional analysis of the 26S proteasome subunits from plants. Mol Biol Rep, 26(1-2): 137-46.
Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M. and Vierstra, R.D., 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A, 99(17): 11519-24.
Gilmour, S.J., Artus, N.N. and Thomashow, M.F., 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol, 18(1): 13-21.
Glickman, M.H. et al., 1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 94(5): 615-23.
Groisman, R. et al., 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell, 113(3): 357-67.
Hardtke, C.S., Okamoto, H., Stoop-Myer, C. and Deng, X.W., 2002. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J, 30(4): 385-94.
Hershko, A. and Ciechanover, A., 1998. The ubiquitin system. Annu Rev Biochem, 67: 425-79.
Higa, L.A., Mihaylov, I.S., Banks, D.P., Zheng, J. and Zhang, H., 2003. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol, 5(11): 1008-15.
Hori, T. et al., 1999. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene, 18(48): 6829-34.
Ishitani, M., Xiong, L., Lee, H., Stevenson, B. and Zhu, J.K., 1998. HOS1, a genetic locus involved in cold-responsive gene expression in arabidopsis. Plant Cell, 10(7): 1151-61.
Jackson, P.K. et al., 2000. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 10(10): 429-39.
Karniol, B., Malec, P. and Chamovitz, D.A., 1999. Arabidopsis FUSCA5 encodes a novel phosphoprotein that is a component of the COP9 complex. Plant Cell, 11(5): 839-48.
Kosarev, P., Mayer, K.F. and Hardtke, C.S., 2002. Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol, 3(4): RESEARCH0016.
Kwok, S.F., Piekos, B., Misera, S. and Deng, X.W., 1996. A complement of ten essential and pleiotropic arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol, 110(3): 731-42.
Lee, H. et al., 2002. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. Embo J, 21(11): 2692-702.
Lippuner, V., Cyert, M.S. and Gasser, C.S., 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem, 271(22): 12859-66.
Liu, C. et al., 2003. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev, 17(9): 1130-40.
Matsuda, N., Suzuki, T., Tanaka, K. and Nakano, A., 2001. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J Cell Sci, 114(Pt 10): 1949-57.
Maytal-Kivity, V., Reis, N., Hofmann, K. and Glickman, M.H., 2002. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem, 3: 28.
Molnar, G., Bancos, S., Nagy, F. and Szekeres, M., 2002. Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta, 215(1): 127-33.
Moon, J., Parry, G. and Estelle, M., 2004. The ubiquitin-proteasome pathway and plant development. Plant Cell, 16(12): 3181-95.
Nishitani, C., Demura, T. and Fukuda, H., 2002. Analysis of early processes in wound-induced vascular regeneration using TED3 and ZeHB3 as molecular markers. Plant Cell Physiol, 43(1): 79-90.
Osaka, F. et al., 2000. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. Embo J, 19(13): 3475-84.
Osterlund, M.T., Hardtke, C.S., Wei, N. and Deng, X.W., 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 405(6785): 462-6.
Peng, Z., Serino, G. and Deng, X.W., 2001. A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. Development, 128(21): 4277-88.
Sakamoto, H., Araki, T., Meshi, T. and Iwabuchi, M., 2000. Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene, 248(1-2): 23-32.
Schwechheimer, C., 2004. The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta, 1695(1-3): 45-54.
Schwechheimer, C., Serino, G. and Deng, X.W., 2002. Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell, 14(10): 2553-63.
Serino, G. et al., 2003. Characterization of the last subunit of the Arabidopsis COP9 signalosome: implications for the overall structure and origin of the complex. Plant Cell, 15(3): 719-31.
Serino, G. et al., 1999. Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Plant Cell, 11(10): 1967-80.
Serrano, M. and Guzman, P., 2004. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics, 167(2): 919-29.
Smalle, J. and Vierstra, R.D., 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 55: 555-90.
Sonoda, Y. et al., 2007. SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis. Plant J, 50(4): 586-96.
Stary, S. et al., 2003. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol, 133(3): 1360-6.
Staub, J.M., Wei, N. and Deng, X.W., 1996. Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis. Plant Cell, 8(11): 2047-56.
Vierstra, R.D., 2003. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 8(3): 135-42.
Wei, N., Chamovitz, D.A. and Deng, X.W., 1994. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell, 78(1): 117-24.
Wei, N. and Deng, X.W., 1992. COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis. Plant Cell, 4(12): 1507-18.
Welin, B.V., Olson, A., Nylander, M. and Palva, E.T., 1994. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol, 26(1): 131-44.
Wertz, I.E. et al., 2004. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science, 303(5662): 1371-4.
Wu, J.T., Chan, Y.R. and Chien, C.T., 2006. Protection of cullin-RING E3 ligases by CSN-UBP12. Trends Cell Biol, 16(7): 362-9.
Xie, Q. et al., 2002. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 419(6903): 167-70.
Xu, R. and Li, Q.Q., 2003. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol, 53(1-2): 37-50.
Yan, N., Doelling, J.H., Falbel, T.G., Durski, A.M. and Vierstra, R.D., 2000. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol, 124(4): 1828-43.
Yang, X. et al., 2002. The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr Biol, 12(8): 667-72.
Zhou, C. et al., 2001. The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochem, 2: 7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文