跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:夏靜鈴
研究生(外文):Ching-Ling Hsia
論文名稱:以仿生法製備CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金表面以提升其抗腐蝕性質之研究
論文名稱(外文):A biomimetic approach to develop CaCO3/Mg,Al-hydrotalcite composite layer on Mg alloy to protect from corrosion
指導教授:汪俊延
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:49
中文關鍵詞:鎂合金腐蝕碳酸鈣
外文關鍵詞:Mg alloyCorrosionCalcium Carbonate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以仿生法製備CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金AZ91D表面,探究其抗腐蝕性質之研究。將鎂合金AZ91D試片表層先形成Mg,Al-hydrotalcite(Mg6Al2(OH)16CO3•4H2O),再將具Mg,Al-hydrotalcite層之鎂合金AZ91D試片以懸吊方式浸置在通有二氧化碳之氯化鈣(CaCl2)溶液中,一方面通入二氧化碳可提供形成碳酸鈣所需的碳酸根,另一方面藉由Mg,Al-hydrotalcite之陰離子交換性質,在鎂合金基材表面上形成緻密之碳酸鈣層。
由X-Ray繞射分析結果發現,在室溫下,Mg,Al-hydrotalcite層之鎂合金AZ91D試片浸置在氯化鈣溶液中所形成之碳酸鈣為Calcite相。由SEM之微結構觀察發現,所形成的Calcite相之碳酸鈣會隨著浸置時間的增加而增加。藉由橫截面觀察顯示碳酸鈣也夾雜在Mg,Al-hydrotalcite層中缺陷與裂縫中生長。
由電化學測試顯示,鎂合金AZ91D基材(無碳酸鈣層和Mg,Al-hydrotalcite之鎂合金試片)之腐蝕電位約在-1.45V/Ag/AgCl,腐蝕電流密度約為250μA/cm2;而CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金AZ91D表面之腐蝕電位約在-1.35 V/Ag/AgCl,其腐蝕電流密度約在7.8μA/cm2,除了電化學測試外,也利用鹽水噴霧測試、模擬海水腐蝕試驗及伽凡尼腐蝕測試,其試驗結果顯示,以仿生法製備CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金AZ91D表面,有助於提高鎂合金AZ91D試片的抗腐蝕能力。
This work discussed the corrosion resistance of the CaCO3/Mg,Al-hydrotalcite-coated Mg alloy. The CaCO3/Mg,Al-hydrotalcite composite layer was formed on Mg alloy (AZ91D) by means of biomimetic approach. At first the Mg,Al-hydrotalcite layer was developed on Mg alloy. Afterward, the thick and fast CaCO3 layer was coated on Mg sample, which take advantage of anion-exchangeability of Mg,Al-hydrotalcite by immersing the AZ91D sample in CaCl2 solution. In order to provide the needed CO32- for the formation of CaCO3, CO2 was add into the CaCl2 solution.
The X-Ray diffraction results revealed that a calcium carbonate (CaCO3) layer was coated on the Mg alloy sample surface in 0.1 M CaCl2 solution. The calcium carbonate was calcite phase. The scanning electron microscope (SEM) observation results found that the content of calcium carbonate (CaCO3) increased with increasing of times in 0.1 M CaCl2 solution. The cross-section of samples observation indicated that the calcium carbonate (CaCO3) also was formed on defect and crack areas of the Mg,Al-hydrotalcite layer.
The electrochemical polarization test results showed that the corrosion potential (Ecorr) and current density (Icorr) of the Mg alloy substrate were -1.45 V/Ag/AgCl and 250 μA/cm2. The Ecorr and Icorr of the sample with the CaCO3/Mg,Al-hydrotalcite composite layer were -1.35 V/Ag/AgCl and 7.8 μA/cm2. Several corrosion testing results presented that the sample with the CaCO3/Mg,Al-hydrotalcite composite layer had a much greater corrosion resistance than the sample with the Mg,Al-hydrotalcite layer and the Mg alloy substrate. Therefore the CaCO3/Mg,Al-hydrotalcite composite layer could form on Mg alloy (AZ91D) by biomimetic approach. The composite layer substantially improved the corrosion resistance of the Mg alloy substrate.
致謝i
中文摘要ii
英文摘要iii
總目錄iv
表目錄vi
圖目錄vii
第一章前言1
第二章實驗步驟與方法6
2-1實驗流程6
2-2實驗材料與試片前處理6
2-3Mg,Al-hydrotalcite(Mg6Al2(OH)16CO3•4H2O)之製備方法6
2-4碳酸鈣之形成機制7
2-5顯微組織觀察7
2-5-1掃描式電子顯微鏡(SEM)7
2-5-2場發射掃描式電子顯微鏡(EF-SEM)7
2-6X-Ray繞射分析8
2-7溶液測定8
2-7-1鈣、鎂離子濃度分析儀8
2-7-2pH值測定儀8
2-8腐蝕測試9
2-8-1電化學測試法9
2-8-2鹽水噴霧測試9
2-8-3模擬海水腐蝕測試10
2-8-4伽凡尼腐蝕測試10
第三章實驗結果17
3-1將形成Mg,Al-hydrotalcite層之鎂合金AZ91D試片浸置在氯化鈣 溶液中17
3-1-1XRD分析結果17
3-1-2顯微組織觀察17
(一)表面型態17
(二)橫截面18
3-1-3Mapping之元素分佈19
(一)表面型態19
(二)橫截面19
3-1-4EDS之成份分析19
3-1-5浸置溶液測試20
(一)pH值測定20
(二)鈣、鎂離子分佈20
3-1-6腐蝕試驗20
(一)極化實驗20
(二)鹽霧試驗21
(三)模擬海水之腐蝕測試21
(四)伽凡尼腐蝕測試22
第四章討論37
4-1鎂合金AZ91D在水中自我保護機制38
4-2鎂合金AZ91D之 Mg,Al-hydrotalcite層探討38
4-3碳酸鈣形成機制 39
4-4浸置過程中,pH值與碳酸鈣形成之關係39
4-5鈣、鎂離子對碳酸鈣生成之影響39
4-6腐蝕試驗40
第五章結論46
第六章參考文獻47
1.D. S. Tawil, Magnesium Technology in Proceedingd of the Conference, (1986) PP.66
2.王木琴, 工程材料, 復文, 台南市, 1996
3.I. J. Polmear, Material Science and Technology, Vol.10 (1994) pp. 1-16
4.陳錦修, 工焰材料, Vol.186 (2002) pp.148
5.B. L. Mordike, and T. Ebert, Mater. Sci. Eng. A, Vol.302 (2001) pp.37
6.J. E. Gary, and B. Luan, J. Alloy Compound, Vol.336 (2002) pp. 88-113
7.C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, Materials Science Engineering A, Vol.325 (2002) pp.344-355
8.C. Shaw and H. Jones, Materials Science Engineering, Vol. A226-228 (1997), pp.856-860
9.J. H. Nordlien, S. One, N. Masuko and K. Nisancioglu, Corrosion Science, Vol.39 (1997) pp.1397
10.M. Avedesian and Hugh Baker, Magnesium and magnesium alloys, ASM Specialty Handbook, (1999)
11.B. Genevieve, B. Christine and P. Nadine, Electrochemical Society Proceedings, Vol.23 (2000) pp.166
12.O. Lunder, T. K. Aune, and K. Nisanciogl, Corrosion, Vol.43 (1987) pp.291
13.A. L. Rudd, C. B. Breslin and F. Mansfeld, Corros. Sci., Vol.42 (2000) pp.275~288
14.D. A. Jones: Principles and Prevention of Corrosion, second edition, Prentice Hall, NJ, 1996 pp.44
15.A. K. Sharma, R. U. Rani, M. Afzar, K.S.N. Acharya, M. Muddu and K. Sumeet, Metal Finishing, Vol.94 (1996) pp.16~27
16.J. Senf, G. Berg, C. Friedrich, E. Broszeit and C. Berger, Magnesium Alloys and Their Applications, eds. B. L. Mordike and K. U. Kainer, International Congress of Magnesium Alloys and Their Applications, Wolfsburg, Germany, Apr. 28-30, 1998, pp. 457~462
17.J. Senf and E. Broszeit, Adv. Eng. Mater., Vol.1 (1999) pp.133-137
18.H. Wentz and L. Ganim, Light Metal Age, Vol.50 (1992) pp.20-21
19.崔福齋, 鄭傳林, 仿生材料, 新文京開發出版股份有限公司, 2006
20.薛郁欣, 溫室效應完全自救手冊,台灣環境保護聯盟
21.Y. T. Clifford and F. B. Chen, AIChE Journal, Vol.44 (1998) pp.1790-1798
22.J. K. Lin, C. L. Hsia and J. Y. Uan, Scripta Materialia, Vol.56 (2007) pp.927-930
23.V. R. L. Constantino, and T.J.Pinnavaia, Inorg. Chem.,Vol.34 (1995) pp. 883-892
24.S. Miyata, and A.Okada, Clays and Clay Miner, Vol.25(1997)pp.14
25.N. Iyi, T. Matsumoto, Y. Kaneko, and K. Kitamura, Chem. Mater. Vol.16 (2004) pp.2926-2932
26.H. Konno, Y. Nanri, M. Kitamura, Powder Technology, Vol.129 (2003) pp.15-21
27.H. Konno, Y. Nanri, and M. Kitamura, Powder Technology, Vol.123 (2002) pp.33-39
28.洪長春, 黃玉棻, 簡國明, 微奈米碳酸鈣, Vol.5 (2004)
29.M. Kitamura, H. Konno, A. Yasui, and H. Masuoka, Journal of Crystal Growth, Vol.236 (2002) pp.323-332
30.M. Kitamura, Journal of Colloid and Interface Science, Vol.236 (2001) pp.318-327
31.W. H. Taft, in:Developments in Sedimentology, Vol.9B,Sds. G.V. Chilingar, H.J.Bissel and R.W.Fairbridge(Elsevier,New york,1967) pp.151-167.
32.Y. Kitano, Bull. Chem. Soc., Japan, Vol.35 (1967) pp.1973
33.H. Roques and A. Girou, Water Research, Vol.8 (1974) pp.907
34.J. W. Murray, J. Geology, Vol.62 (1954) pp.481
35.J. L. Bischoff. and W. S. Fyfe, Am.J.Sci., Vol.266 (1968) pp.65
36.J. L. Bischoff, J Geol.Res., Vol.73 (1968) pp.3315
37.R. M. Pytkowicz, J. Geol., Vol.73 (1965) pp.196
38.K. M. towe and P.G. Malone, Nature, Vol.226 (1970) 348
39.P. Möller, Z. Anal. Chem., Vol.268 (1974) pp.28
40.P. Möller, Z. Physik. Chem. N. F., Vol.89 (1974) pp.80
41.H. Roques, and A. Girou, Water Research, Vol.8 (1974) pp.907-920
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 鎂合金廢料轉製為鎂–鋁類水滑石之製備以及將鎂–鐵–氯類水滑石做為新磷結合劑之開發
2. 利用乙醇催化反應產生碳膜於Li-Al-CO3 LDH 之場發射特性研究
3. Li-Al-CO3層狀雙氫氧化物(LDH)經500℃鍛燒之粉末做為乙醇脫氫觸媒之研究
4. 電鍍鈷薄膜於熱電材料對銲錫之擴散阻障特性之研究
5. 純鎂製骨釘/骨板於模擬體液之間隙腐蝕及其生成物對骨釘與骨板間抗拉強度影響之研究
6. Li-Al-CO3層狀雙氫氧化物(LDH)之螢光特性研究及其插層CO32-陰離子對螢光強度之影響
7. 鎂合金表面成長碳酸鈣/水滑石複合膜提升抗腐蝕研究及其聚焦離子束定點切割觀察
8. 純鎂表面生長鎂鐵碳酸根雙層氫氧化物及其在模擬體液中的抗蝕性研究
9. AZ91D鎂合金表面化成Mg,Al-hydrotalcite保護層及其抗腐蝕特性研究
10. SUS-316L不銹鋼金屬表面直接成長Mg-Fe layered double hydroxide (LDH)保護層及其於0.85M H2SO4水溶液抗腐蝕特性研究
11. 二氧化碳資源化再利用於鎂及鎂合金化成處理與表面改質以提升其抗蝕性與生物相容性之研究
12. 以Ca2+/HCO3–化成法於鎂合金表面製備CalciticCaCO3硬質層及其抗腐蝕之研究
13. 快速凝固Mg-Al-Zn合金薄板於氯化鈉水溶液腐蝕性質及其綠色環保防蝕鍍層之研究
14. 鎂合金廢料再生為氫氣能源及其生命週期評估之研究
15. 轉換鎂合金廢料為再生氫氣能源之研究