跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭羽涵
研究生(外文):Yu-Hang Cheng
論文名稱:藉以電漿輔助化學氣相沉積法於固定氫氣/乙炔比例下製備碳密封鍍層光纖:不同厚度的影響
論文名稱(外文):Effect of different film thicknesses on the hermetically carbon-coated optical fiber prepared by plasma enhanced chemical vapor deposition method at a fixed hydrogen /acetylene ratio
指導教授:薛顯宗
指導教授(外文):Sham-Tsong Shiue
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:電漿輔助化學氣相沉積乙炔碳鍍膜光纖
外文關鍵詞:pecvdcarbon filmacetylenethicknessoptical fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是以電漿輔助化學氣相沉積法製備碳密封鍍層光纖,在固定氫氣/乙炔(20/5)比例下,不同厚度對於碳鍍層光纖性質的影響。厚度分別為50、75、88、100、125、138、150、200、300、400、500和600 nm。並分別利用拉曼光譜儀、傅立葉轉換紅外光光譜儀、紫外/可見光光譜儀、殘留應力量測系統、原子力顯微鏡、接觸角試驗、光學顯微鏡和掃描式電子顯微鏡分析與觀察碳鍍層的微結構、光學性質、機械性質、表面粗糙度、抗水氣的能力和表面形態。最後將碳鍍層光纖浸泡於液態氮中進行低溫試驗,經由光學顯微鏡來觀察碳鍍層光纖之微裂縫分佈的情況。結果顯示,隨著碳鍍層厚度由50 nm增加到600 nm,碳鍍層的微結構越趨向於無序。當碳鍍層厚度沉積到88 nm時,殘留應力開始累積並達到最大值,碳鍍層表面具有較低的表面粗糙度、較高抵抗水氣和溫變的能力。因此,在碳鍍層厚度為88nm時,可得到最佳的碳密封鍍層光纖的表面形態,並達到保護玻璃光纖的效果。
The effect of different film thicknesses on the hermetically carbon-coated optical fiber prepared by plasma enhanced chemical vapor deposition method at a fixed hydrogen/acetylene ratio is investigated. Twelve kinds of film thickness are selected as 50, 75, 88, 100, 125, 138, 150, 200, 300, 400, 500, and 600 nm. The microstructure, optical property, mechanical property, surface roughness, water-repellency, surface morphology are analyzed by Raman scattering spectroscopy, Fourier transforms infrared spectrometry, UV/Vis spectrophotometer, residual stress measurement, atomic force microscope, contact angle meter, optical microscope, and scanning electron microscopy, respectively. The hermetic property of carbon-coated optical fibers was examined through the immersion in the liquid nitrogen for one day and thermal stress induced cracks on the surface of carbon coating was observed by optical microscope. Results indicate that if the film thickness increase from 50 nm to 600 nm, the disorder phase in carbon coating structure becomes more conspicuous. If the film thickness is 88 nm, the carbon coating has a compact structure, and the residual stress of carbon coating rises up to a critical value. Moreover, the carbon coating with thickness of 88 nm has a higher water-repellency and a lower surface roughness, and can sustain the thermal loading. Hence, it is found that the carbon coating prepared at the film thickness of 88 nm is the best for hermetic optical fiber coating.
中文摘要……………………………………………………………………I
英文摘要…………………………………………………………………II
總目錄……………………………………………………………………III
圖目錄……………………………………………………………………VI
表目錄……………………………………………………………………X
第一章 緒論………………………………………………………………1
第二章 實驗步驟………………………………………………………10
2-1試片準備與前處理……………………………………………11
2-2碳密封鍍層光纖的製備………………………………………12
2-2-1 沉積條件…………………………………………………12
2-2-2 射頻電漿輔助化學氣相沈積系統之介紹………………14
2-3 碳鍍層的厚度量測……………………………………………17
2-4碳鍍層的微結構特性分析……………………………………18
2-4-1 拉曼散射光譜……………………………………………18
2-4-2 傅立葉轉換紅外光光譜儀………………………………22
2-5碳鍍層的光學性質量測………………………………………25
2-6碳鍍層的殘留應力量測………………………………………27

2-7碳鍍層的表面粗糙度量測……………………………………29
2-8碳鍍層的表面阻水率量測……………………………………31
2-9表面形態觀察…………………………………………………33
2-10低溫環境試驗…………………………………………………34
2-11掃描式電子顯微鏡……………………………………………35
第三章 結果與討論……………………………………………………36
3-1不同厚度下碳鍍層的沉積速率………………………………37
3-2不同厚度下試片表面形貌觀察………………………………39
3-3不同厚度的碳鍍層微結構拉曼分析……………………………42
3-4不同厚度碳鍍層微結構紅外光光譜分析……………………46
3-5不同厚度對於碳鍍層光學性質的影響…………………………50
3-6不同厚度對於殘留應力的影響………………………………54
3-7不同厚度對於表面粗糙度的影響………………………………56
3-8碳鍍層厚度對於鍍層表面阻水率之影響……………………58
3-9不同厚度對於碳鍍層光纖表面顯微結構觀察………………63
3-10不同厚度對於碳鍍層光纖晶低溫試驗表面顯微結構觀……66
3-10-1 鍍層光纖在常溫下表面形貌的觀察…………………66
3-10-2 鍍層光纖在低溫試驗下表面形貌的觀察……………69
第四章結論………………………………………………………………72
參考文獻…………………………………………………………………74
誌謝………………………………………………………………………79
作者簡介…………………………………………………………………80
[1]K. C. Kao and G. A. Hockham, Proc. IEE Vol. 133, p. 1151 (1966).
[2]W. A. Gambling, Vol. 6, No. 6, p. 1084 (2000).
[3]C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, Journal of Lightwave Technology, Vol. 7, No.9, p. 1360, (1989).
[4]G. Keiser, Optical Fiber Communication, Second Edition, McGraw-Hill, New York, (1991).
[5]D. K. Mynbaev, L. L. Scheiner, Fiber-optic communications technology, Prentice Hall, New Jersey, (2001).
[6]吳曜東, 光纖原理與應用, 全華科技圖書公司, (1997).
[7]K. C. Kao, Optical Fiber System:Technology, Design, and Applications, McGraw-Hill, New York (1982).
[8]龔祖德, 光纖通訊技術, 全華科技圖書公司 (1997).
[9]A. H. Cherin, An Introduction to Optical Fibers, McGraw-Hill, New York, (1983).
[10]M. M. Bubnov, E. M. Dianov, S. L. Semjonov, Tech. Dig. Optical Fiber Communication Conf., paper ThF2, (1992).
[11]K. E. Lu, G. S. Glaesemann, R. V. Vandewoestine, and G. Kar, Journal of Lightwave Technology Vol. 6, No. 2, p. 240, (1988).
[12]S. Aisenberg, Journal of Vacuum Science and Technology, Vol. 2, No. 2, p. 369, (1984).
[13]J. P. Powers, An Introduction to Fiber Optic Systems, Aksen Associates, Boston, (1993).
[14]C. R. Kurkjian, H. H. Yuce, and M. J. Matthewson, in Optical network engineering and integrity, The International Society for Optical Engineering, Proc. SPIE 2611, p. 34, (1996).
[15]G. M. Camilo, in Optical fiber reliability and testing, The International Society for Optical Engineering, Proc. SPIE 3848, p. 55, (1999).
[16]J. L. Armstrong, M. J. Matthewson, M. G. Juarez and C. Y. Chou, Proc. SPIE, 3848, p. 62, (1999).
[17]S. T Shiue and H. Ouyang, Journal of Applied Physics, Vol. 90, p. 5759, (2001).
[18]M. J. Matthewson, Fiber optics reliability and testing, Optical science and technology, Boston, (1993).
[19]C. A. Taylor, W. K.S. Chiu, Surface and Coatings Technology, Vol. 168, p. 1, (2003).
[20]D. P. Dowling, K. Donnelly, T. P. O''Brien, A. O''Leary, T. C. Kelly, and W. Neuberger, Diamond and Related Materials, Vol. 5, p. 492, (1996).
[21]Y. Katsuyama, N. Yoshizawa, and T. Yashiro, Journal of Lightwave Technology, Vol. 9, p. 1041, (1991).
[22]C. R. Wüthrich, C. A. P. Muller, G. R. Fox, H. G. Limberger, International Conference on Solid-State Sensors and Actuators, Chicago, June p. 16-19, (1997).
[23]John P. Powers, An Introduction to Fiber Optic Systems, Aksen Associates, Boston. (1993)
[24]J. Robertson, Diamond and Related Materials Vol. 12, p. 79 (2003).
[25]Alfred Grill, Diamond and Related Materials, Vol. 8, p. 428-434, (1999).
[26]J. Robertson, Vol.66, p.1789-1796, (1994)
[27]R. W. Wood, Nature Vol.122, p. 349.(1928)。
[28]C. De Martino et al. Diamond and Related Materials Vol.4 , p. 1210-1215 (1995)
[29]F. Tuinstra et al, The Journal of Chemical Physical Vol. 53, p. 1126-1130 (1970)
[30]P. C. Eklund et al. Carbon, Vol.33, p.959-972 (1995)。
[31]Vuppuladium et al, Raman Scattering From Hydrogenated Amorphous Carbon Films, J.Appl.Phys, p. 77(1995)。
[32]Z. Sun, X. Shi, and K. Yoshida, Diamond Relat. Mater, Vol.5, p. 919 (1995)
[33]X. Shi, B.K. Tay, H.E. Tan, et al., J. Appl. Phys. Vol. 79 p. 7234-7239 (1996)
[34]NT-MDT Solver P47 Instruction Mannual NT-MDT Co., Moscow, Russia, (2002)
[35]Henk W. C. Postma, Allard Sellmeijer, and Cees Dekker, Adv. Mater., Vol. 12, No. 17, p. 1299-1302 (2000).
[36]T. Young, Philos. Tans. R. Soc. Lond. Vol. 9 p. 255 (1805).
[37]施漢章, plasma講義 (2005)
[38]材料分析, 汪建民主編, 中國材料科學學會出版.
[39]Miton ochring, The material science of thin film, academic press, Inc
(1992)
[40]E. Tomasella et al. Surface and Coatings Technology Vol. 141 p. 286-896 (2001).
[41]M. Lejeune, M. Benlahsen,R. Bouzerar, Applied Physics Letters, Vol. 84, p. 344, (2004).
[42]A. von Keudell, M. Meier, C. Hopf, Diamond and Related Materials, Vol. 11, p. 969, (2002).
[43]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, Journal of Applied Physics, Vol. 80, p. 440, (1996).
[44]M. A. Tamor, W. C. Vassell, Journal of Applied Physics, Vol. 76, p. 3823, (1994).
[45]R. O. Dillon, J. A. Woollam, V. Katkanant, Physical Review B, Vol. 29, p. 3482, (1984).
[46]V. Paret, M.-L. Th_eye ,Journal of Non-Crystalline Solids, p.266-269 750-754 (2000)
[47]M. Lejeune et al. Thin Solid Films Vol. 389, p. 233-238 (2000)
[48]W.S. Choi et al. Thin Solid Films Vol. 475 p. 287-2890 (2005)
[49]Wei Gou, Guoqing Li, Xinpu Chu, Bin Zhong, Surface & Coating Technology, (2006)
[50]S.P Louh, C.H. Wong, M.H. Hon, Thin Solid Film, Vol.498 p.235-239 (2006).
[51]M. Veres, S. Toth, M.Fule, M. Koos, Journal of Non-Crystalline Solids, Vol. 352 p. 1348-1351 (2006).
[52]Ristein et al., J. Appl. Phys., Vol. 84 p. 3836-3847 (1998).
[53]D.Sheeja et. al., Diamond Related Materials Vol. 11 p. 1643-1647 (2002).
[54]J. Robertson, Journal of Non-Crystalline Solids, Vol. 198-200, p. 615, (1996)
[55]Rusli, J. Robertson, G. A. J. Amaratunga, Journal of Applied Physics, Vol. 80, p. 2998, (1996).
[56]Y. Hayashi, K. Hagimoto, H. Ebisu, M. K. Kalaga, T. Soga, M. Umeno, T. Jimbo, Japen Journal Applied Physics, Vol.39, p. 4088, (2000).
[57]J. Tauc, Physical Status Solid, Vol. 15, p. 627, (1966).
[58]C.W. Chen, J. Robertson, Journal of Non-Crystalline Solids, Vol. 227-230, p. 798, (1998).
[59]J. Robertson, Semiconductor. Science Technology, Vol. 18, p. S12, (2003).
[60]C. Oppedisano and A. Tagliaferro Appl. Phys. Lett., Vol. 75 p. 3650-3652 (1999).
[61]Seong S. Choi, D.W. Kim, J.W. Joe, J.H. Moon, K.C. Park, J. Jang, Materials Science & Engineering B, B46 p. 133-136 (1997).
[62]S.-H. Cho et al. Surface and Coatings Technology Vol. 174–175 p. 1111–1115 (2003).
[63]W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, Langmuir Vol. 15 P. 3395 (1999).
[64]C.A. Taylor, W.K. Chiu, Surface and Coatings Technology Vol. 168 p. 1-11 (2003).
[65]F. M. Fowkes, Adv. Chem. Vol. 43 p. 1 (1964)
[66]X.B. Yan, T. Xu, S.S. Yue, H.W. Liu, Q.J. Xue, S.R. Yang, Ind. Diamond and related materials, Vol. 14 p. 1342-1347 (2005).
[67]R. N. Wenzel, Ind. Eng. Chem. Vol. 28 p. 988 (1963).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top