跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李健偉
研究生(外文):Chien-Wei Li
論文名稱:原子力顯微鏡場致氧化氮化矽薄膜與操控成長鎳矽化物奈米線
論文名稱(外文):Atomic Force Microscopy Field-induced Oxidation on Si3N4 Thin Film and Controlled Growth of Nickel Silicide Nanowires
指導教授:許薰丰
指導教授(外文):Hsun-Feng Hsu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:原子力顯微鏡場致氧化氮化矽薄膜氧化
外文關鍵詞:AFMfield-induced oxidationSi3N4 thin film oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
掃描探針顯微鏡微影術,為製作奈米結構的技術中費用低且適合實驗室研究的方法,而在AFM氧化的技術中環境濕度為非常重要的參數。故本研究深入探討環境濕度對於AFM氧化氮化矽薄膜的氧化形態、成長動力學及成分的影響;另外,隨著半導體業中線寬不斷下降,金屬矽化物奈米線的性質研究的重要性隨之增加,因此本研究亦以氮化矽/矽的系統利用AFM微影技術達到操控成長與矽基板不同方位、不同線寬之鎳矽化物奈米線之目的,並探討不同方向、線寬對其性質影響。
研究結果顯示,環境濕度對於氧化行為的影響如下:氧化物高度隨電壓上升增加的趨勢隨濕度增加而明顯;高相對濕度及高外加偏壓下氧化物形成雙層結構;相同外加偏壓與氧化時間時,濕度較高環境下氮化矽薄膜轉變成氧化矽過程較為完整,並有較低的氧化起始時間及較快的初始氧化速率;高濕環境的空間電荷效應也造成特徵衰減長度的下降與較低的飽和高度等現象。
操控成長鎳矽化物的研究中發現,鎳膜厚度較薄會促進金屬相較少的NiSi2提早形成。鎳膜厚度5 nm的圖案化基板中發現,700 ℃退火條件下,平行矽<110>方向之氮化矽範本視窗可得完整之NiSi2奈米線,平行矽<100>方向之氮化矽範本視窗則得到階梯狀奈米線形態;600 ℃退火條件所得之鎳矽化物奈米線則不因窗口方向或大小改變矽化物形態。鎳膜厚度2 nm、600 ℃退火時,當氮化矽範本視窗小於60 nm為連續鎳矽化物奈米線,較大窗口則是散佈的奈米點,並有部分奈米點呈現長寬比不同的矩形形貌。
Scanning probe lithography process is a low-cost method for fabricating nanometer-scale structures and adapts to investigate in laboratory. Relative humidity is a very important parameter in atomic force microscope (AFM) field-induced oxidation method. In this work, the effects of relative humidity on oxide shape、oxidation kinetics and the composition of oxide in AFM field-induced local oxidation on silicon nitride thin film, pre-deposited on the silicon substrate, were studied. Furthermore, with continuous shrinking of the dimensions of integrated devices, to investigate the characteristic of metal silicide nanowires is an important subject of the microelectronics. Consequently, the growth of silicide nanowire inside AFM-induced nanoscale openings on silicon was investigated. We focused on studying the effects of the size and orientation of nanowires on the structure properties.
The results show as follows. The effects of relatively humidity on oxidation behaviors include four phenomenons. Firstly, the trend of oxide height increasing with applied voltage was obviously with relative humidity increasing. Secondly, “two-story shaped” oxide protrusions were observed at high relative humidity by applying a high voltage. Thirdly, silicon nitride could be completely converted into silicon oxide at high relative humidity with the same applied voltage and pulse time. Lastly, by the space charge effect, the characteristic decay length and saturation height decline at high relative humidity.
For 5 nm Ni deposition, complete NiSi2 nanowires formed at 700 °C annealing inside the line-shape openings, along Si<110> orientation, and faceted nanowires formed inside the line-shape openings, along Si<100> orientation. When the sample annealed at 600 °C the boundaries of silicide nanowires to extent conform to the outlines of the openings. For 2 nm Ni deposition, continuous silicide nanowires formed at 600 °C annealing inside the line-shape openings with 60 nm width and rectangular silicide nanodots were observed inside the line-shape opening with ≧ 200 nm width.
摘要 I
Abstract II
Table Captions VI
Figure Captions VII
壹、緒論 1
1-1 前言 1
貳、原子力顯微鏡基礎理論及文獻回顧 3
2-1原子力顯微鏡介紹 3
2-1-1 原子力顯微鏡基本原理 3
2-1-2 原子力顯微鏡掃瞄模式 4
2-2 原子力顯微鏡氧化術及應用 5
2-2-1 原子力顯微鏡氧化理論 5
2-2-2 原子力顯微鏡微影技術 6
2-3 文獻回顧 7
2-3-1矽基板上氧化行為之探討 7
2-3-2氮化矽薄膜上氧化行為之探討 9
2-3-3環境濕度對AFM氧化之影響 9
2-3-4金屬矽化物奈米結構 10
2-3-5 鎳金屬矽化物奈米結構 11
2-4研究動機與目的 12
參、實驗規劃與方法 13
3-1 實驗目的與內容 13
3-2 實驗步驟 13
3-2-1 氮化矽薄膜氧化行為探討 13
3-2-2 操控成長鎳矽化物奈米線 14
3-3 實驗與分析儀器 15
3-3-1 原子力顯微鏡(Atomic Force Microscope) 15
3-3-2 場發射掃瞄式電子顯微鏡( Field Emission-SEM ) 15
3-3-3 歐傑電子能譜儀( Scanning Auger Nanoprobe ) 16
3-3-4 穿透式電子顯微鏡(Analytical Transmission Electron Microscope) 16
肆、結果與討論 17
4-1 原子力顯微鏡場致氧化氮化矽薄膜 17
4-1-1 環境濕度對氧化點形貌的影響 17
4-1-2 環境濕度對氧化方塊成分的影響 19
4-1-3 環境濕度對氧化動力學的影響 20
4-1-4 AFM場致氧化於氮化矽薄膜的氧化機制 22
4-2 應用原子力顯微鏡微影技術操控成長鎳矽化物奈米結構 24
4-2-1 矽基板上鎳薄膜厚度對鎳矽化物生成之影響 24
4-2-2 不同方向、線寬之圖案化基板及鎳膜厚度對鎳矽化物奈米結構生成之影響 25
伍、結論 28
陸、參考文獻 68
1.S. Gwo, J. Phys. “Scanning probe oxidation of Si3N4 masks for nanoscale lithography, micromachining”, and selective epitaxial growth on silicon, Chem. Solids 62, 1673 (2001).
2.H. C. Day, D. R. Allee, “Selective area oxidation of silicon with a scanning force microscope”, Appl. Phys. Lett. 62, 2691 (1993).
3.Yoshitaka Okada, Yoshimasa Iuchi, Mitsuo Kawabe,James S. Harris, Jr, “Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process”, J. Appl. Phys., 88, 1136 (2000).
4.H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, “Nanofabrication of Titanium Surface by Tip-Induced Anodization in Scanning Tunneling Microscopy”, Jpn. J. Appl. Phys. 32, L553 (1993).
5.D.Wang, L. Tsau, K. L. Wang, P. Chow, “Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy”, Appl. Phys. Lett. 67, 1295 (1995).
6.S. Gwo, C.-L. Yeh, P.-F. Chen, Y.-C. Chou, T. T. Chen T.-S. Chao, S.-F. Hu, T.-Y. Huang, “Local electric-field-induced oxidation of titanium nitride films”, Appl. Phys. Lett. 74, 1090 (1999).
7.F. S. S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx”, Appl. Phys. Lett. 76, 360 (2000).
8.F. S. S. Chien, W.-F. Hsieh, Y.-C. Chou, T. T. Chen, T.-S. Chao, and S. Gwo, “Nano-oxidation of silicon nitride films with an atomic force microscope : Chemical mapping, kinetics, and applications”, J. Appl. Phys. 89, 2465 (2001).
9.I. F. Cuesta, X. Borrise, F. P. Murano, “Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication”, Nanotechnology 16, 2731 (2005).
10.R. García, M. Calleja, H. Rohrer, “Patterning of silicon surfaces with noncontact atomic force microscopy : Field-induced formation of nanometer-size water bridges”, J. Appl. Phys. 86, 1898 (1999).
11.F. P. Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, F. Sanz, “Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy”, J. Appl. Phys. 78, 6797 (1995).
12.M. Ringger, H. R. Hidber, R. Schlogl, P. Oelhafen, H. J. Guntherodt, “Nanometer lithography with the scanning tunneling microscope”, Appl. Phys. Lett. 46, 832 (1985).
13.J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air”, Appl. Phys. Lett. 56. 2001 (1990).
14.E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope”, Appl. Phys. Lett. 64, 1932 (1994).
15.T. Teuschler, K. Mahr, S. Miyazaki,a) M. Hundhausen, L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope : Doping dependence and kinetics”, Appl. Phys. Lett. 67, 3144 (1995).
16.A. E. Gordon, R. T. Fayfield, D. D. Litfin, T. K. Higman, “Mechanisms of surface anodization produced by scanning probe microscopes”, J. Vac. Sci. Technol. B 13, 2805 (1995).
17.D. Stievenard, P. A. Fontaine, E. Dubois, “Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation”, Appl. Phys. Lett. 70, 3272 (1997).
18.P. Avouris, T. Hertel, R. Martel, “Atomic force microscope tip-induced local oxidation of silicon : kinetics, mechanism, and nanofabrication”, Appl. Phys. Lett. 71, 285 (1997).
19.J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, “Understanding scanned probe oxidation of silicon”, Appl. Phys. Lett. 73, 271 (1998).
20.J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, “Role of space charge in scanned probe oxidation”, J. Appl. Phys. 84, 6891 (1998).
21.H. Sugimura, N. Nakagiri, “Chemical approach to nanofabrication : modifications of silicon surfaces patterned by scanning probe anodization”, Jpn. J. Appl. Phys. 34, 3406 (1995).
22.H. Jungblut, D. Wille, H. J. Lewerenz, “Nano-oxidation of H-terminated p-Si(100) : Influence of the humidity on growth and surface properties of oxide islands”, Appl. Phys. Lett. 78, 168 (2001).
23.H. Kuramochi, K. Ando, H. Yokoyama, “Effect of humidity on nano-oxidation of p-Si(001) surface”, Surf. Sci. 542, 56 (2003).
24.J. Tersoff, R. M. Tromp, “Shape transition in growth of strained islands : spontaneous formation of quantum wires”, Phys. Rev. Lett. 70, 2782 (1993).
25.S. H. Brongersma, M. R. Castell, D. D. Perovic, M. Zinke-Allmang, “Stress-Induced Shape Transition of CoSi2 Clusters on Si(100)”, Phys. Rev. Lett. 80, 3795 (1998).
26.K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra, B. N. Dev, “Shape transition in the epitaxial growth of gold silicide in Au thin films on Si(111)”, Phys. Rev. B 51, 14330 (1995).
27.Zhian He, David J. Smith, P. A. Bennett, “Endotaxial Silicide Nanowires”, Phys. Rev. Lett. 93, 256102 (2004).
28.O. Chamirian, J.A. Kittl , A. Lauwers , O. Richard, M. van Dal, K. Maex, “T hickness scaling issues of Ni silicide”, Microelectron. Eng. 70, 201 (2003).
29.S. Y. Chen, L. J. Chen, S. D. Tzeng, S. Gwo, “Epitaxial growth of NiSi2 on (001)Si inside nanoscale contact holes prepared by atomic force microscope tip-induced local oxidation of the thin Si3N4 layer”, J. Vac. Sci. Technol. B 23, 1905 (2005).
30.S. Y. Chen, L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Appl. Phys. Lett. 87, 253111 (2005).
31.H. H. Uhlig, “Initial oxidation rate of metals and the logarithmic equation”, Acta Metall. 4, 541 (1956).
32.H. Z. Massoud, J. D. Plummer, E. A. Irene, “Thermal Oxidation of Silicon in Dry Oxygen Growth-Rate Enhancement in the Thin Regime”, J. Electrochem. Soc. 132, 2685 (1985).
33.H. Z. Massoud, J. D. Plummer, E. A. Irene, “Thermal Oxidation of Silicon in Dry Oxygen : Growth-Rate Enhancement in the Thin Regime”, J. Electrochem. Soc. 132, 2693 (1985).
34.B. E. Deal, A. S. Grove, “General relationship for the thermal oxidation of silicon”, J. Appl. Phys. 36, 3770 (1965).
35.F. Deng, R. A. Johnson, P. M. Asbeck, S. S. Lau,W. B. Dubbelday, T. Hsiao, J. Woo, “Salicidation process using NiSi and its device application”, J. Appl. Phys. 81, 8047 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top