跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃婉莉
研究生(外文):Wan-Lih Huang
論文名稱:香杉芝之培養及其生理活性與抗氧化性質
論文名稱(外文):Cultivation of Antrodia salmonea and its physiological activity and antioxidant properties
指導教授:毛正倫毛正倫引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:142
中文關鍵詞:香杉芝固態培養呈味品質抗氧化性質抗發炎
外文關鍵詞:Antrodia Salmoneasoild culturetaste qualityantioxidant propertiesanti-inflammation
相關次數:
  • 被引用被引用:22
  • 點閱點閱:1098
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究探討香杉芝之固態深層培養的條件,期望能培養出與樟芝相同具有良好生理功效之產品。香杉芝是由香杉木上所發現之新種,因外觀平伏緊貼而稱為芝,與樟芝同屬,易與樟芝混淆之藥用菇類。真菌菇類具有一次營養機能性、二次嗜好機能性及三次生理機能性,本實驗係針對香杉芝菌絲體、香杉芝燕麥及燕麥,進行一般成分、營養、物性、呈味、生理活性物質、抗氧化和抗發炎性質之分析。近來研究指出,經由香杉芝所純化出來的化合物,在人類白血球細胞具有抗氧化功效(Shen,2006),但由於有關於香杉芝之文獻甚少,因此想深入探究。
以加水量50% 之燕麥為基礎培養基,在不同發酵條件下生長所得之香杉芝燕麥,生產品質穩定之產品,探討獲得最大量菌絲體之最適培養基組成。經探討後,於28天的培養時間,發現以第九天液態菌種接種比例10%,均質時間為0秒、於25C的培養溫度下,並分別使用碳源和氮源為 1% 葡萄糖和 0.5% 脫脂大豆粉時,可獲得最高產量的菌絲體(0.42 mg/g)。
進一步針對最適固態條件進行大量培養,結果發現,菌絲體主要由醣類(42.71%)和粗蛋白(44.21%)組成。香杉芝燕麥與燕麥在一般組成上並無太大的差異,主要差異在於組成分醣類上(63.00和70.15%)。在生理活性物質方面,腺苷含量以菌絲體最高;麥角固醇含量上,菌絲體(3.17)>香杉芝燕麥(0.42 mg/g)。在呈味成分含量(以等價鮮味值表示)方面,依序為菌絲體(3.34)>香杉芝燕麥(0.39)及燕麥(0.03 g/100 g)。
不論乙醇萃取或熱水萃取,皆是以香杉芝燕麥萃取率最高。菌絲體、香杉芝燕麥及燕麥之熱水萃取物在抗氧化力部分,於20 mg/ml時,依序為香杉芝燕麥(92.43)>燕麥(65.12)>菌絲體(49.26%)。在還原力部分,菌絲體、香杉芝燕麥及燕麥熱水萃取物在20 mg/ml時,分別為1.22、2.16和0.10。捕捉DPPH自由基能力方面以燕麥熱水萃取物清除能力最佳,在5 mg/ml時即可達100%。而在螯合亞鐵離子之能力上,於20 mg/ml時,依序為香杉芝燕麥(96.83)>燕麥(67.73)>菌絲體(46.22%)。
菌絲體、香杉芝燕麥及燕麥之乙醇萃取物在20 mg/ml時,抗氧化力分別為88.1、100和100%。在還原力上,菌絲體、香杉芝燕麥及燕麥之乙醇萃取物在10 mg/ml時,分別為0.46、1.12和0.43。在清除DPPH自由基之能力上,於20 mg/ml時,依序為香杉芝燕麥(94.20%)>菌絲體(92.85%)>燕麥(92.68%)。在螯合亞鐵離子之能力上,在20 mg/ml 時,菌絲體、香杉芝燕麥及燕麥分別為84.04、100和92.18%。在抗氧化成分分析上,香杉芝燕麥之總酚類化合物是所有試驗樣品中含量最多的天然抗氧化成分,含量上以熱水萃取量較高。
在抗發炎部分,菌絲體、香杉芝燕麥及燕麥之熱水萃取物,在測試劑量範圍內(2.5~500 μg/ml),對小鼠巨噬細胞(RAW 264.7)皆不具有生長抑制。對於內毒素(LPS)誘導巨噬細胞生成之NO具有捕捉效果,於濃度500.0 μg/ml,清除率分別為21.34、40.84和12.45%。
綜合上述得知燕麥經過固態發酵為香杉芝燕麥後,可提高燕麥之營養、呈味和生理活性物質之含量及抗氧化及抗發炎性質。因此,本研究之結果深具開發具營養、機能及保健性之潛力產品。
Abstract
The research reported herein is designed to study the solid culture of Antrodia salmanea to produce high physicochemical properties product like Antrodia cinnamomea. Antrodia salmonea is a new specific, the fungus is associated with Cunninghamia konishii. By the appearance of calm down and as close is called the iris, and this fungus is similar to Antrodia cinnamomea. Mushrooms possess three functionalities including the first nutritional functionality, the second taste functionality and the third physiological functionality. The objectives of this study were to investigate the proximate composition, nutritional components, physicochemical properties, taste components, physiologically active components, antioxidant properties, and antinflammation effects of Antrodia salmanea mycelia, A. Salmonea colonized oat (ASCO) and oat. Recent research has pointed out, new lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes (Shen, 2006). However, only limited information is reported in the literature about this fungus, then the objective of this research was to study Antrodia salmonea
ASCO was obtained from the solid state fermentation of cooked oat with 50% moisture content as the base under various conditions to produce high quality products, then to study the optimal conditions for solid culture of A. Salmonea to evaluate the maximum biomass. With regard to A. Salmonea for solid culture, the optimal conditions were incubation time of inoculum 8 days, inoculation rate 10%, homogenization time of inoculum 0 sec with carbon and nitrogen sources being 1% glucose and 0.5% soybean meal for 28 days at 25°C to get the highest yield (0.42 mg/g).
Furthermore, the optimal conditions for solid culture was used to get a great quantity culture. Carbohydrate (42.71%) and crude protein (44.21%) were major components found in mycelia. Generally, the proximate profiles of ASCO and oat were similar, but different with the major component carbohydrate being (63.00 and 70.15%, respectively). With regard to physiologically active components, the contents of adenosine of mycelia was highest ; the contents of ergosterol in order were mycelia (3.17 mg/g) > filtrate (0.42 mg/g). With regard to contents of taste components as expressed equivalent umami concentration, mycelia (3.34) was higher than ASCO (0.39) and oat (0.03 g/100 g).
Extraction yield of ethanolic and hot water extracts from ASCO was better than A. Salmonea mycelia and oat. The antioxidant activities of hot water extracts were in the descending order: ASCO (92.43%) > oat (65.12%) > mycelia (49.26%) at 20 mg/ml. The reducing powers of hot water extracts were 1.22, 2.16 and 0.10 at 20 mg/ml for mycelia, ASCO and oat, respectively. The hot water extracts from oat showed an excellent scavenging ability on 1,1-diphenyl-2-picrylhydrazyl radicals at 5 mg/ml (100%). At 20 mg/ml, chelating abilities of the hot water extracts on ferrous ions were in the descending order : ASCO (96.83%) > oat (67.73%)> mycelia (46.22%).
For mycelia, ASCO and oat, at 20 mg/ml, antioxidant activities of ethanolic extracts were 88.1, 100 and 100% whereas at 10 mg/ml, reducing powers were 0.46, 1.12 and 0.43, respectively. At 20 mg/ml, scavenging abilities of ethanolic extracts on DPPH were in the descending order: ASCO (94.20%) > oat (92.85%) > mycelia (92.68%). For ethanolic extracts from mycelia, ASCO and oat chelated ferrous ions by 84.04, 100.00 and 92.18% at 20 mg/ml, respectively. Total phenols were the major naturally occurring antioxidant components found in all samples, and the content of hot water extracts was more then ethanolic extracts.
In the anti- inflammation activity test, the inhibition on the growth of RAW 264.7 cells was studied in a MTT test using hot water extracts from mycelia, ASCO and oat. Four samples with the increased concentrations did not exhibit the growth of RAW 264.7 cells. Effect of hot water extracts from mycelia, ASCO and oat on LPS-induced NO production in Raw 264.7 cell in the descending order : ASCO (40.84%) > mycelia (21.34%) > oat (12.45%) at 500.0 μg/ml.
目 錄
表次 ix
圖次 xii
前言 1
文獻整理 2
一、香杉芝之介紹 2
二、食藥用菇之機能性 2
三、固態發酵 4
四、食藥用菇之生理活性物質 8
五、菇類之呈味特性 10
六、抗氧化性質 19
七、發炎反應與相關因子 22
材料與方法 26
一、實驗材料 26
二、實驗方法 26
(一)培養條件探討 26
1. 試藥 26
2. 菌種保存 26
3. 菌種活化及接種原製備 26
4. 液態發酵 27
5. 固態發酵 27
6. 樣品粉末製備 29
(二)一般成分分析 29
1. 試藥 29
2. 水分 29
3. 灰分 30
4. 粗脂質 30
5. 粗纖維 30
6. 粗蛋白 30
7. 還原糖 31
(三)品質評估 31
1. 試藥 31
2. 物理性質分析 31
3. 生理活性物質分析 32
(四)呈味特性成分分析 34
1. 試藥 34
2. 可溶性糖 34
3. 游離胺基酸 35
4. 核苷酸 36
(五)抗氧化性質分析 37
1. 試藥 37
2. 樣品製備 37
3. 抗氧化力 38
4. 還原力 38
5. 捕捉1,1-二苯基-2-苦味肼基團(DPPH)能力 38
6. 清除羥自由基之能力 39
7. 螯合亞鐵離子之能力 39
8. 抗氧化成分分析 39
(六)抗發炎試驗 41
1. 試藥 41
2. 細胞株 41
3. 熱水萃取物之製備 41
4. 巨噬細胞存活率之測定 42
(七)統計分析 43
結果與討論 44
一、培養條件之探討 44
二、一般成分分析 57
(一)水分 57
(二)碳水化合物 57
(三)粗灰分 59
(四)粗脂質 59
(五)粗纖維 59
(六)粗蛋白 60
三、品質評估 60
(一)物理性質分析 60
(二)生理活性物質分析 68
四、呈味特性成分分析 74
(一)可溶性糖 74
(二)游離胺基酸 79
(三)核苷酸 80
五、抗氧化性質分析 86
(一)熱水和乙醇萃取物之萃取率 86
(二)熱水萃取物之抗氧化性質 88
1. 熱水萃取物之抗氧化力 88
2. 熱水萃取物之還原力 88
3. 熱水萃取物之捕捉1,1-二苯基-2-苦味肼基團能力 93
4. 熱水萃取物之清除羥自由基能力 96
5. 熱水萃取物之螯合亞鐵離子能力 99
6. 熱水萃取物抗氧化性質之EC50 102
7. 熱水萃取物之抗氧化成分分析 102
(三)乙醇萃取物之抗氧化性質 107
1. 乙醇萃取物之抗氧化力 107
2. 乙醇萃取物之還原力 110
3. 乙醇萃取物之捕捉1,1-二苯基-2-苦味肼基團能力 110
4. 乙醇萃取物之螯合亞鐵離子能力 110
5. 乙醇萃取物抗氧化性質之EC50 117
6. 乙醇萃取物之抗氧化成分分析 117
六、發炎反應之評估 121
(一)對小鼠巨噬細胞(RAW 264.7)生長之影響 121
(二)LPS誘導巨噬細胞(RAW 264.7)生成NO之影響 124
結論 130
參考文獻 131

表 次
附表1、L-胺基酸之呈味特性 13
附表2、胺基酸之相對甜度 14
附表3、鮮味胺基酸及鮮味核苷酸之個別相對鮮味強度 15
附表4、菇類子實體的等價鮮味值 16
附表5、菇類子實體的等價鮮味值(Continued) 17
附表6、菇類菌絲體之等價鮮味值 18
表1、液態發酵期間香杉芝生物質、pH值和殘糖量之變化 45
表2、香杉芝固態發酵期間,生物質和pH值之變化 47
表3、不同培養條件所得香杉芝燕麥之生物質及最終pH值 51
表4、香杉芝菌絲、香杉芝燕麥和燕麥之一般組成 58
表5、香杉芝固態發酵期間,生物質和pH值之色澤分析 61
表6、不同培養條件所得香杉芝燕麥之色澤分析 63
表7、香杉芝菌絲體、香杉芝燕麥和燕麥之色澤分析 67
表8、不同溫度下香杉芝菌絲、香杉芝燕麥和燕麥之溶解度 69
表9、不同溫度下香杉芝菌絲、香杉芝燕麥和燕麥之膨潤力 70
表10、不同溫度下香杉芝菌絲、香杉芝燕麥和燕麥之吸水指標 71
表11、香杉芝菌絲、香杉芝燕麥和燕麥之麥角固醇、腺苷和粗三
帖含量 73
表12、香杉芝菌絲、香杉芝燕麥和燕麥多醣分子量分布 77
表13、香杉芝菌絲、香杉芝燕麥和燕麥之可溶性糖類組成 78
表14、香杉芝菌絲、香杉芝燕麥和燕麥之游離胺基酸組成 81
表15、不同溫度下香杉芝菌絲、香杉芝燕麥和燕麥之游離胺基
酸之呈味特性 82
表16、香杉芝菌絲、香杉芝燕麥和燕麥之核苷酸組成 83
表17、香杉芝菌絲、香杉芝燕麥和燕麥之等價鮮味值 85
表18、香杉芝菌絲、香杉芝燕麥和燕麥乙醇和熱水萃取物之萃取率 87
表19、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物之抗氧化力 89
表20、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物之還原力 91

表21、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物清除1,1-二苯
基-2-苦味肼基團自由基之能力 94
表22、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物清除羥自由
基之能力 97
表23、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物對亞鐵離子
之螯合能力 100
表24、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物抗氧化性質
之EC50 103
表25、香杉芝菌絲、香杉芝燕麥和燕麥粉末抗氧化性質之
EC50(熱水) 104
表26、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物中抗壞血酸、
β-胡蘿蔔素、生育酚和總多酚類之含量 106
表27、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物之抗氧化力 108
表28、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物之還原力 111
表29、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物清除1,1-二
苯基-2-苦味肼基團自由基之能力 113
表30、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物對亞鐵離子
之螯合能力 115
表31、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物抗氧化性質
之EC50 118
表32、香杉芝菌絲、香杉芝燕麥和燕麥粉末抗氧化性質之
EC50(乙醇) 119
表33、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物中抗壞血酸、
β-胡蘿蔔素、生育酚和總多酚類之含量 120
表34、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物之總酚類和
其抗氧化能力之相關係數 122
表35、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物之總酚類和
其抗氧化能力之相關係數 123
表36、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物對巨噬細胞
(RAW 264.7)生長之影響 125
表37、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物對LPS
誘導巨噬細胞(RAW 264.7)生成NO之影響 128

圖 次
圖1、液態發酵期間香杉芝生物質和pH值之變化 46
圖2、香杉芝燕麥固態發酵期間,生物質和pH值之變化 48
圖3、香杉芝固態發酵期間菌絲生長情形 49
圖4、不同(A)溫度(B)初始pH值(C)氮源(D)碳源(E)
接種原均質時間(F)接種量(G)培養空間對培養28天之
香杉芝燕麥生物質和最終pH之影響 55
圖5、高效液相層析之糊精標準曲線 75
圖6、(A) 香杉芝菌絲、(B) 香杉芝燕麥和 (C) 燕麥之 PolySep-G
FC-P 4000 and PolySep-GFC-P 5000層析圖 76
圖7、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物之抗氧化力 90
圖8、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物之還原力 92
圖9、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物清除1,1-二苯基-
2-苦味肼基團自由基之能力 95
圖10、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物清除羥自由基能力 98
圖11、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物對亞鐵離子之
螯合能力 101
圖12、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物之抗氧化力 109
圖13、香杉芝菌絲、香杉芝燕麥和燕麥乙醇取物之還原力 112
圖14、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物清除1,1-二苯
基-2-苦味肼基團自由基之能力 114
圖15、香杉芝菌絲、香杉芝燕麥和燕麥乙醇萃取物對亞鐵離子之
螯合能力 116
圖16、香杉芝菌絲、香杉芝燕麥和燕麥水萃取物對巨噬細胞存活
率之影響 126
圖17、香杉芝菌絲、香杉芝燕麥和燕麥熱水萃取物對LPS誘導巨
噬細胞生成NO之影響 129
參考文獻
水野卓,川合正允(賴慶亮譯)。1997。菇類的化學。生化學。國立編譯館。p. 13-374。
王子慶。2000。葡萄子與皮抗氧化性之研究。碩士論文。國立屏東科技大學食品科學系。屏東,台灣。
王西華、林玉娟、程梅萍。1994。固態發酵的回顧與展望。生物產業,5(3) : 17-24。
王伯徹、陳啟楨、華傑。1998。食藥用菇類的培養與應用。食品工業,p.128-133, 187。
王伯徹。2005。食藥用菇菌類保健食品產業發展彙編(上)。食品工業發展研究所。
王進崑、柯文慶、洪端良、陳重文、盧榮錦、賴滋漢。2002。食品、營養儀器分析。富林出版社,台中,台灣。
王鳳英。1994。利用固態發酵以玉米穗軸為基質生產纖維素分解酵素。國立台灣大學農業化學研究所博士論文。台北,台灣。p. 1-153。
潘素美、葉至新。1997。台灣食用藥用菇超氧歧化酵素含量之比較。中國農業化學會誌,35(2) : 209~219。
朱育維。2003。荷葉乙醇萃取物抗氧性之探討。碩士論文。國立台灣大學食品科技研究所。台北,台灣。
吳彩平。2006。以固態發酵製備樟芝米及其品質與抗氧化性質。國立中興大學食品科學系碩士論文。台中,台灣。
李之恩。2003。銀耳饅頭、香菇柄饅頭及金針菇饅頭之品質評估。國立中興大學食品科學系碩士論文。台中,台灣。
李志超、楊珊珊。1997。食藥用菌生產與消費指南。中國農業出版社,p. 416。
李炫璋。2003。牛樟芝菌絲體之體內保肝功能評估及其熱水萃物在體外對基質金屬蛋白水解酶活性之影響。國立中興大學碩士論文,台中,台灣。
肖崇厚、陳蘊如。1989。中藥化學。科學技術出版社。上海。p. 323-360。
林秀卿。1999。食藥用菇類之品質和抗氧化性質之評估。國立中興大學食品科學系碩士論文。台中,台灣。
林耕年。1984。食品化學。台灣書店,台北,台灣。
姜淑繡 。2001。省產蘿蔔之抗氧化性研究。碩士論文。大葉大學食品工程研究所。員林,台灣。
拱玉郎。1997。天然抗氧化劑發展近況。食品工業發展研究所。29 : 29-37。
洪千雅。2001。仙草抗氧化機能性之研究。博士論文。國立中興大學食品科學系。台中,台灣。
食品分析方法手冊。2004。食品工業發展研究所,新竹,台灣。
香川芳子(監修)。2004。五訂食品成分表。女子營養大學出版部。東京,日本。
徐文媛、吳亭瑤。2002。冬蟲夏草,善用別誤用。常春月刊。237:35-67。
高益槐。2000。世紀奇草話靈芝。元氣齋出版社,台北市,台灣。
張為憲。1995。食品化學,第三章,華香園,台北市,台灣。
張雪娥、陳健祺、楊媛絢、許麗鳳、王叔菀、陳姍姍、陳瓊雲、魏玉慧、黃效民、袁國芳。1998。利用動物細胞進行安全性評估─雙歧桿菌的長期毒性試驗。食品工業發展研究所研究報告第87-1297號。
張潔娜。2002。舞菇、羊肚菌與雞肉絲菇菌絲體之抗氧化及抗致突變性質。國立中興大學食品科學系碩士論文。台中,台灣。
莊苓萍。1996。食用菇的營養價值。食品工業,9: 30-38。
郭惠菁。2005。以固態發酵製備蟲草米及其品質與抗氧化性質。國立中興大學碩士論文。台中,台灣。
陳弘坤。1986。洋菇濃縮物呈味特性及其粉末化之研究。國立中興大學食品科學系碩士論文。台中,台灣。
陳克廉。1987。甘藷加工利用與質地特性之研究。台灣大學食品科技研究所博士論文。
陳長安。1998。常用藥物治療手冊。全國藥品年鑑雜誌社。台北,台灣。
陳啟楨。1999。菇類二次代謝物質及其利用。食品工業,31 : 1-11。
曾裕琇。1997。柱狀田頭菇之品質評估及其生理活性物質ODA之定量。國立中興大學食品科學系碩士論文。台中,台灣。
曾裕琇。2004。自不同栽培方法所得松杉靈芝產物之生理活性評估。國立中興大學食品科學系博士論文。台中,台灣。
游英欽。1995。以搖瓶震盪及小型發酵槽培養,探討培養基組成及物理化學因子對於靈芝多醣生成及生長型態變化之影響。國立交通大學生物科技研究所。新竹,台灣
馮鳴國、周前貴、馮高閎及帥建平。1987。人工培養蟲草菌菌絲體對麻醉犬血管的擴張作用。中醫通報,12(12):41-45。
黃仕政、陳勁初。2000。發酵生物技術在菇類食品的應用。中華食品工業雜誌,40: 62-67。
黃仕政。1996。洋菇菌絲體之培養及其品質之評估。國立中興大學食品科學系碩士論文。台中,台灣。
黃仕政。2005。蛹蟲草之培養和其呈味性質及經γ- 照射之巴西蘑菇子實體和樟芝菌絲體之抗氧化性質。國立中興大學食品科學系博士論文。台中,台灣。
黃伯超、游素玲。1997。營養學精要。健康文化事業股份有限公司。台北,台灣。
黃惠君。2004。食藥用菇的營養與藥用價值。食品工業,36: 25-32。
路秀玲、趙樹欣。2000。固態發酵中生物量的測定方法。天津輕工業學院學報,4: 57-61。
廖仁宏。2003。固態培養生產靈芝菌絲體之研究。東海大學化學工程學系碩士論文。台中,台灣。
廖仁宏。2003。固態培養生產靈芝菌絲體之研究。東海大學化學工程學系碩士論文。台中,台灣。
廖春燕、鄭裕國。2005。固態發酵生物反應器。微生物學通報,32(1): 99-103。
趙瑞益。1995。鎘誘發中國倉鼠卵巢細胞的分子致突變機制:含氧自由基的參與。國立清華大學生物醫學研究所碩士論文。新竹,台灣。
劉仲敏、曹友聲、常琴。1994。人工固態發酵培養冬蟲夏草菌絲體的研究。河南科學,12: 335-338。
劉宣誠。1958。杉木及大巒杉毬果成熟期之調查。台大實驗林。
潘素美、葉志新。1997。台灣食藥用菇超氧歧化酵素含量之比較。台灣農化會誌,35(2): 209-210。
潘書毓。2002。台灣產山藥之酚類含量及抗氧化特性與加工的影響。碩士論文。中國文化大學生活應用科學研究所。台北。
蔡淑瑤。2002。靈芝與柳松菇之抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致變性質。國立中興大學食品科學系碩士論文。台中,台灣。
鄭文珮。2002。不同乾燥處理對山藥粉理化性質之影響及其在冷凍湯圓之應用。靜宜大學食品營養學系碩士論文。台中,台灣。
魯新成、何慶邦。1996。雞樅多醣的分離及其性質研究。貴州科學,14(3): 24-26。
蕭安民。1994。美國燕麥及其製品。糧食與油脂,1:25-30。
簡韶妤。2006。雞肉絲菇之培養及其呈味性質與生理活性評估。國立中興大學食品科學系碩士論文。台中,台灣。
Aidoo, K. E., Hendry, R. and Wood, B. J. B. 1982. Solid substrate fermentations. Adv. Appl. Microbiol. 28: 201-235.
Ajlouni, S. O., Beelman, R. B., Thompson, D. B. and Mau, J. L. 1995. Change in soluble sugars in various tissues of cultivated mushrooms, Agaricus bisporus during postharvest storage. In G. Charalambous (Ed), Food Flavors (1865-1880). Amsterdam, Netherlands: Elservier Sci. Publ.
Astorg, P. 1997. Food carotenoids and cancer prevention: An overview of current research. Trends Food Sci. Technol. 8: 406-413.
Bermingham S., Maltby L., Cooke R. C. 1995. A critical assessment of the validity of ergosterol as an indicator of fugal biomass. Mycol Res. 99(4):479-484.
Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss. U. Technol. 28: 25-30.
Buttery L. D. K., Springall D. R.,Chester A.. H., Evans T, J., Standfield N., Parums D. V., Yacoub M. H. and Polak J. M. 1996. Inducible nitric oxide synthase is present within human atherosclerotic lesion and promotes the formation and activity of peroxynitrite. Lab. Invest. 75(1):77-85.
Carpenter, A.P. 1979. Determination of tocopherols in vegetable oils. Journal of the American Oil Chemists’ Society, 56: 668-672.
Carrizalez, V., Rodriguez, H. and Sarrdina, I. 1981.Determination of specific grow the of molds on semi-solid cultures. Biotechnol. Bioeng. 23: 321-333.
Ceirwyn S. James. 1995.Analytical Chemistry of Foods. Blackie Academic & Professional. London.
Chang, H. L., Chao, C. R., Chen, C. C. and Mau, J. L. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorate and Cordyceps militaris mycelia. Food Chem. 74: 203-207.
Chang, S.T. and Miles, P.G. 1989. Edible mushroom and their cultivation. CRC Press, Boca Raton, Florida.
Chang, T. T., and Chou W. N. 1995. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 99:756-758.
Chang, T. T., and Chou W. N. 2004. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia koniahii Taiwan. Botanical Bulletin of Academia Sinica. 45:347-352.
Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. and Houghton, M. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Sci. 244: 359-362.
Crisan, E. V. and Sands, A. 1978. Nutritional value. In The Biology and Cultivation of Edible Mushrooms. Eds Chang, S. T. and Hayes, W. A. pp. 137-165. Academic Press, New York.
DaSilva, E. J. 2005. Mushroom in medicine and culture. Int. J. Med. Mush. 7: 75-78.
Davidson, R.W., W.A. Campbell, and D.J. Blaiadell. 1938. Differentiation of wood-decaying fungi by their reactions on gallic or tannic acid medium. J. Agric. Res. 57: 683-695.
Denizot, F. and Lang, R. 1986. Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods. 89: 271-277.
Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-amino salicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161-169.
Durand, A. 2003. Bioreactor designs for solid state fermentation. Biochem. Eng. J. 13: 113-125.
Dziezak, J.D. 1986. Preservatives: antioxidant. Food Technology, 40: 94-102.
El-Mekkawy, S., Meselhy, M. R., Nakamura, N., Tezuka, Y., Hattori, M., Kakiuchi, N., Shimotohno, K., Kawahata, T. and Otake, T. 1998. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. 49:1651-1657.
Fang, Y. Z., Yang, S. and Wu, G. 2002. Free radicals, antioxidants and nutrition. Nutrition 18:872-879.
Fennema, O.R. 1996. Lipids in “Food Chemistry” 3rd ed. New York.
Ferrari, M., Fornasiero, M. C. and Isetta, A. M. 1990. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J. Immunol. Methods. 131(2): 165-72.
Fujimaki, M. 1998. Food functions (in Japanese). Gakkai Shyupan Center, Tokyo. 1-309.
Giese, J. 1996. Antioxidants: Tool for preventing lipid oxidation. Food Technology, 11: 73-82.
Glauser M. P., Heumann D., Baumgartner J. D. and Cohen J. 1994. Pathogenesis and potential strategies for prevention and treatment of septic shock : an up date. Clin Infect Dis 18:S205-16.
Glazebrook, M. A., Vining, L. C. and White, R. L. 1992. Growth morphology of Streptomyces akiyoshiensis in submerged culture: influence of pH, inoculum, and nutrients. Can. J. Microbiol. 38: 98-103.
Goldsby R. A., Kindt T. J., Osborne B. A.. and Kuby J. 2000. Immunobiology. In: Leukocyte migration and inflammation Chapter 15.W. H. Freeman & Company, NY, USA..
Guha Mausumee and Mackman Nigel. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling. 13:85-94.
Gutteridge, J. M. C. and Halliwell, B. (Ed.). 1994. Antioxidants in Nutrition, Health, and Disease, Oxford University Press, Oxford, UK.
Hader, Y. and Cohen-Arazi, E. 1986. Chemical composition of the edible mushroom Pleurotus ostreatus produced by fermentation potential single cell protein. Appl. Environ. Microbiol. 51: 1352-1354.
Halliwell, B. 1994. Free radicals and antioxidant : a personal view. Nutr. Rev. 58(8) : 253-265.
Halliwell, B. and Gutteridge, J. M. C. 1989. Free radicals, ageing and disease. In: Free Radicals in Biology and Medicine, ed. by B. Halliwell and J. C. Gutteridge, 484-487.
Halliwell, B. and Gutteridge, J.M.C. 1999. “Free Radical in Biology and Medicine”, ed. By B. Halliwell and J. M. C. Gutteridge. Clarendon Press, Oxford.
Hammond, J. B. W. and Nichols, R. 1975. Changes in respiration and soluble carbohydrates during the postharvest of mushroom (Agaricus bisporus). J. Sci. Food Agric. 26: 835-842.
Hansen, M. B., Nielsen, S. E., & Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of immunological methods, 119: 203-210.
Hesseltine, C. W. 1972. Biotechnology report: solid state fermentations. Biotechnol. Bioeng. 14: 517-532.
Holker, U., Hofer, M. and Lenz, J. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-182.
Holm, J. Bjorck, N.G., Asp, N. G., Sjoberg, L.B., and Lundquist, I. 1985. Starch availability in vitro and vivo after flaking steam cooking and popping of wheat. J. Cereal Sci. 3:193-206.
Ikumoto, T., Sasaki, S., Namba, H., Toyama, R., Horitoki, H. and Mouri, T. 1991. Physiologically active compounds in the extacts from tochukaso and culture mycelia of Cordyceps and lsaria. Yakugaku Zasshi 111:504-509.
James, C. S. 1995. Analyticl Chemistry of Foods. Chapman and Hall, London.
Janusz, M. J., Austen, K. F. and Czop, J. K. 1989. Isolation of a yeast heptaglucoside that inhibets monocyte phagocytosis of zymosan particles. J. Immunol. 142: 959-965.
Jong, S. C.,Birmingham J. M.,Pai S. H. 1991. Immunomodulatory substances of fungal origin. J Immunol Immunopharmacol. X Ι:115-122.
Karakaya, S. 2004. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr. 44 : 453-464.
Kaur, C.and Kapoor H. C. 2001. Antioxidants in fruits and vegetables –the millennium’s health Int. J. Food Sci. Technol. 36:703-725.
Kazuo S and Shigetoshi S., 1999. Small-Scale Solid-State Fermentations. Manual of Industrial Microbiology and Biotechnology. 2: 61-63.
Kier. L. B. 1972. A molecular theory of sweet taste. J. Pharm. Sci. 61: 1394-7.
Kim, D. H., Shim, S. B., Kim, N. J. and Jang, I. S. 1999. Beta-glucuronidase inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biological and Pharmaceutical Bulletin, 22: 162-164.
Kim, W. G., Lee, I. K., Kim, J. P., Ryoo, I. J., Koshino, H. and Yoo, I. D. 1997. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. J. Nat. Prod. 60: 721-723.
Klein, B. P. and Perry, A. K. 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J. Food Sci. 47: 941-948.
Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. 1998. Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113, 147-156.
Lingnert, H., Vallentin, K. and Eriksson, C. E. 1979. Measurement of antioxidant effect in model system. J. Food Proc. Presv. 3: 87-103.
Litchfield, J. H. 1967. Morel mushroom mycelium as a food flavoring material. Biotechnol. Bioeng. 9: 289-304.
Luderitz, O., Freudenberg, M., Galanos, C., Lehmann, V., Rietschel, E. Th. and Shaw, D. H. 1982. Lipopolysaccharides of gram-negative bacteria. Curr Top Membr Transp 17, 79-151.
Matcham S. E., Jordan B. R and Wood, D. A. 1984. Methods for assessment of fungal growth on solid substrates. Soc. Appl. Bacterioc. Tech. Ser. 19: 6-18.
Matcham, S. E., Jordan, B. R. and Wood, D. A. 1985. Estimation of fungal biomass in a solid substrate by three independent methods. Appl. Microbiol. Biotechnol. 21:108-112.
Matsuda, H., T. Morikawa, I. Toguchida, J. Y. Park, S. Harima, and M. Yoshikawa. 2001. Antioxidant constituents from rhubarb: Structuralrequirements of stilbenes for the activity and structures of two new anthraquinone glucosides. Bioorganic & Medicinal Chem. 9:41-50.
Mau, J. L. 2005. The umami taste of edible and medicinal mushrooms. International Journal of Medicinal Mushrooms, 7: 119-125.
Mau, J. L., Beelman, R. B., and Eiegler, G. R. 1992. Effect of 10-oxo-trans-8-decenoic acid on growth of Agaricus bisporus. Phytochemistry 31 (2) : 4059-4064.
Mau, J. L., Lin, H. C. and Chin, C. C. 2001. Non-volatile components of several medicinal mushrooms. Food Res. Int. 34: 521-526.
Mau, J. L., Wu, K. T., Wu, Y. H. and Lin, Y. P. 1998. Nonvolatile taste components of ear mushrooms. J. Agric. Food Chem. 46: 4583-4586.
Metacalfe, L. D., Schmitiz, A. A. and Pelka, J. R. 1966. Rapid preparation of fatty acid ester from lipid for gas chromatographic analysis. Anal. Chem. 38: 514.
Misaki A., Nasu M, Sone Y, Kishida E and Kinoshita C. 1986. Comparison of structure and antitumor activity of polysaccharides isolated from Fukurotake. The fruiting body of Volvariella Volvacea. Agric. Biol. Chem. 50:2171-2183.
Mizuno, T.1995. Bioactive biomolecules of mushrooms:Food function and medicinal effect of mushroom fungi. Food Reviews International 11 (1) : 7-21.
Morrison, W. R., Tester, R. F., Gidley, M. J., and Karkalas, J. 1993. Resistant to acid hydrolysis of lipid complexed amylose and lipid free amylose in linterizeed waxy and non-waxy barley starch. Carbohydr Res. 245:289-302.
Namiki, M. 1990. Antioxidants/antimutagens in foods. Critical Reviews in Food Science and Nutrition, 29: 273-300.
Ogawa, T., Oka, Y. and Sasaoka, K. 1987. Amino acid profiles of common cultivated mushrooms including the identification of N-(N- L-glutamyl-3-sulfo-L-alanyl) glycine in Flammulina velutipes. J. Food Sci. 52: 135-154.
Ohata T., Fukuda K., Murakami A., Ohigashi H., Sugimura T. and Wakabayashi K. Inhibition by 1’-acetoxychavicolacetate of lipopolysaccharide and interferon-γ-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. 19(6):1007-12, 1998.
Ohshima, H. and Bartsch, H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res., 305, 253–264.
Okazaki, N., Sugama, S. and Tanaka, T. 1980. Mathematical model of surface culture of Koji mold. J. Ferment Techenol. 58: 471-476.
Ooijkaas L. P., Tramper, J. and Buitelaar, R. M. 1998. Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enz. Microbiol. Technol. 22: 480-486.
Oyaizu, M. 1986. Antioxidative activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 35: 771-775.
Pandey, A. 2003. Solid-state fermentation. Biochem. Engineer. 13: 81-84.
Park, J. P., Kim, S. W., Hwang, H. J., Cho, Y. J., and Yun, J. W. 2002. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enz. Microbiol. Technol. 31: 250-255.
Patel R. P. and Darley-Usmer, V. M. 1996. Using peroxynitrite as oxidant with low-density lipoprotein. Methods in Enzymol. 269:375-384.
Pitotti, A. Elizalde, B. E. and Anese, M. 1995. Effect of caramelization and maillard reaction products on peroxidase activity. J. Food Biochem. 18: 445-457.
Qian, H. and Sheng, M. 1998. Simultaneous determination of fat-soluble vitamins A, D and E and pro-vitamin D2 in animal feeds by one-step extraction and high-performance liquid chromatography analysis. J. Chromatogr. 825: 127-133.
Qureshi S. T., Gros P. and Malo, D. 1999. The LPS locus Genetic regulation of host response to bacterial lipopolysaccharide. Inflammation Reserach. 48 : 613-620.
Rai, R. D., Saxena, S., Upadhyay, R. C. and Sohi, H. S. 1988. Comparative nutritional value of various Pleurotus species grown under identical condition. Mush. J. Tropics. 8: 930-980.
Rau, U. Gura, E. Olszewski, E.Wagne, F. 1992. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J. Ind. Microbiol. 9:19-26.
Rexen, P. and Emborg, C. 1992. Investigation of different modifications to the tetrazolium based colorimetric viability assay. Biotechnol. Tech. 6(3): 255-260.
Rho D, Mulchandani A, Luong JHT, LeDuy A (1988) Oxygen requirement in pullulan fermentation. Appl Microbiol Bio-technol 28: 361-366
Rundhaug, J. E., Pung, A., Read, C. M. and Bertram, J. S. 1988. Uptake and metabolism of β-carotene and retinal by C3H/10T1/2 cells. Carcinogenesis. 9: 1541-1545.
Sato, K. and Sudo, S. 1999. Small-Scale Soli-State Fermentations, Manual Industrial Microbiol. Biotech. 2: 61-63.
Schoch, T. J. 1964. Methods in Carbohydrates Chemistry. R. L. Whistler, ed. Academic Press, New York, USA.
Schwacha M. G. 2003. Macrophages and post-burn immune dysfunction. Burn. 29 : 1-14.
Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research. 48(17): 4827-33.
Seitz L. M., Paukstelis J. V. 1977. Metabolites of alternata : ergosterol and ergosta-4,6,8(14),22-tetraen-3-one. J Agric Food Chem. 25(4):838-841.
Shahidi, F. and Wanasundara, P.K.J.P.D. 1992. Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32: 676-103.
Shaw, R. 1967. Fatty acids of fruiting bodies of Basidiomycetes. Nature. 213: 86-87.
Shen, C. C., Shen, Y. C., Wang, Y. H., Lin, L. C., Don, M. J., Liou, K. T., Wang, W. Y., Hou, Y. C.and Chang, T. T. 2006. New lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes. Planta Med. 72: 199-203.
Shi, X. and Dalal, N. S. 1991. Antioxidant behaviors of caffeine: efficient scavenging of hydroxyl radicals. Food Chem. Toxic. 29: 1-6.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Slater T. F., Sawyer B. and Strauli U. D., 1963. Biochem Biophy Acta 77:383.
Taga, M.S., Miller, E.E. and Pratt, D.E. 1984. Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists'' Society, 61: 928-931.
Tasi, M. L., Li, C. F. and Lii, C. Y. 1996. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 74: 750-757.
Taylor, M. W., Hershey, R. A., Levine, R. A., Coy, K. and Olivelle, S. 1981. Improved method of resolving nucleotides by reverse-phase high performance liquid chromatography. J. Chromatogr. 219: 133-139.
Terashita, T. 1988. Biochemistry and ultilization of mushrooms (in Japanese). Ohyo Gizyutsu Shyupan, Tokyo. 1-254.
Tester, R. F. and Morrison, W. R. 1990.Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipid. Cereal Chem. 67:551-557.
Tsai, S. Y., Weng C. C., Huang S. J., Chen C. C. and Mau J. L., 2006. Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Sci. and Technol. (in press).
Tseng, Y. H. and Mau, J. L. 1999. Contents of sugars, free amino acids and free 5′-nucleotides in mushroom, Agaricus bisporus, during post-harvest storage. J. Sci. Food Agric. 79: 1519-1523.
Wang, S. Y., Hsu., M, L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S. and Ho, C. K. 1997 The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J . Cancer. 70: 699-705.
Wang, Y. and McNeil, B. 1995. pH effects on exopolysaccharide and oxlic acid production in cultures of Sclerotium glucanium. Enzyme Microb. Technol. 17 : 124-130.
Weinstein, S. L., Gold, M. R. and DeFranco, A. L. 1991. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc. Natl. Acad. Sci. USA 88 : 4148-4152.
Weinstein, S. L.,Sanghera, J. S., Lemke, K., DeFranco, A. L. and Pelech, S. L. 1992. Bacterial lipopolysaccharide indceds tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J. Biol. Chem. 267 : 14955-14962.
Wood, D. A. 1979. A method for estimating biomass of Agaricus bisporus in a solid substrate, composted wheat straw. Biotechnol. Lett. 1: 255-260.
Wurzenberger, M. and Grosch, W. 1982. The oxidative breakdown of linoliec acid in mushrooms (Psalliota bispora). Z. Lebensm. Unters. Forsch. 175: 186-190.
Yamaguchi, R., Kato, K. and Ueno, Y. 1995. Free-radical scavenging reactions of α-tocopherol during the autoxidation of methyl linoleate in bulk phase. J. Agric. Food Chem. 43: 1455-1461.
Yamaguchi, S. 1967. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J. Food Sci. 32: 473.
Yamaguchi, S. 1979. The umami taste. In Food Taste Chemistry; Boudreau, J. C., Ed.; ACS Symposium Series 115; American Chemical Society: Washington, DC. USA.
Yamaguchi, S., Yoshikawa, T., Ikeda, S. and Ninomiya, T. 1971.Measurement of the relative taste intensity of some L-amino acids and 5′- nucleotides . J. Food Sci. 36: 846-849.
Yang, J. H., Lin, H. C. and Mau, J. L. 2001. Non-volatile taste components of several commercial mushrooms. Food Chem. 72: 465-471.
Yang, Q. Y.and Jong S.C. 1989. Artificial cultivation of vailed lady mushroom, Dictyophoea indusiata. In Wuest PJ, Royes DJ, Beelman RB. (Eds.). Cultivating Edible Fungi. Elsevier, A msterdam. 437-442.
Yasumoto, K., Iwami, K. and Mitsuda, H. 1976. Enzymatic formation of Shiitake aroma non-volatile precursor(s)-lenthionine from lethinic acid. Mush. Sci. 9 : 371.
Yen G. C., Lai, H. H. 2003. Inhibition of reactive nitrogen species effects in vitro and in vivo by isoflavones and soy-based food extracts. J. Agric. Food Chem. 51:7892-7900.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top