跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅子彥
研究生(外文):Tzu-Yen Fu
論文名稱:探討血管生成素對於鼠胚著床前發育之影響與體外著床模式之建立
論文名稱(外文):Effects of angiogenin on the pre-implantation development of mouse embryos and establishment of an in vitro implantation model
指導教授:唐品琦
指導教授(外文):Pin-Chi Tang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:核醣核酸干擾作用著床顯微注射
外文關鍵詞:RNAiimplantationmicroinjection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不同種類生物個體其體內存在多種核醣核酸水解酵素(ribonucleases, RNases),經多年之研究,許多RNases之DNA序列、酵素活性與分子結構,均已有一定程度之瞭解,但對此普遍存在於生物體內之蛋白質,如屬於RNase A家族之血管生成素(angiogenin, Ang),其於胚發育過程中所扮演之角色並未有深入之研究。應用基因轉殖(transgenesis)、基因剔除(knockout)以及基因突變(mutagenesis)等技術可探討基因之生理功能,但其除了耗時、費力外,亦有基因表達專一性不高或不易選殖某特定基因之缺失。因此,本研究之目的為利用核醣核酸干擾(RNA interference, RNAi)作用降解鼠胚Ang mRNA,以產生’似基因剔除’(knockout-like)或’似基因減弱’(knockdown-like)之現象。此外,本研究亦嘗試並建立模擬子宮環境之體外培養系統,期未來能應用於經RNAi處理且Ang表現量降低之鼠胚,在置於此體外培養系統後探討Ang對鼠胚著床之影響。試驗一,設計小鼠Ang家族基因群,包含Ang-1, -2, -4等四型之專一性引子,利用反轉錄聚合酶連鎖反應分析小鼠囊胚各型Ang之表現。結果顯示,僅Ang-1表現於小鼠囊胚。試驗二,針對Ang-1與Ang-2不同序列構築多組不同之RNAi表現質體,以小鼠U6為啟動子並藉由轉染(transfection)技術,將質體送至小鼠B16-F10細胞株內測試各RNAi表現片段(RNAi expression cassette)之效率,試驗結果顯示,所構築之質體均有至少40%之抑制效果,最大之抑制效果甚至可達70%。試驗三,利用顯微注射將Ang-1 RNAi表現片段(U6-sh-1)導入小鼠原核期胚內,觀察其對胚後續發育能力之影響。經體外培養72 h,注射U6-sh-1或U6-shR-1(RNase-1 RNAi表現片段)片段之胚分裂率顯著低於未經任何處理之對照組者(77%與81% v.s. 95%,P<0.05),而注射U6-sh-1或U6-shR-1與對照組之胚發育到桑椹期與囊胚期之百分比率分別具有統計上之顯著差異(49%與48% v.s. 90%, P<0.05),顯示注射外源性基因構築對早期鼠胚之發育有不良影響。以免疫化學染色法分析Ang-1之表現量,可見Ang-1於U6-sh-1注射後鼠胚之表現較未注射組低,RT-PCR之分析結果經數量化後,可見經注射U6-sh-1後Ang-1表現量僅為未注射組之41%。試驗四嘗試以小鼠子宮內膜上皮細胞(endometrial epithelial cells)、基質細胞(stromal cells)與細胞外基質(extracellular matrix, ECM)建立小鼠胚體外著床培養系統,使鼠胚於此培養系統下表現正常侵入(invasion)子宮內膜之行為,以彌補體內著床適期(implantation window)觀察不易之缺點。利用石臘切片與掃描式電子顯微鏡觀察子宮內膜上皮細胞於此培養系統之形態,發現上皮細胞呈現柱狀、極化之現象,可形成類似胞飲突(pinopodes)之結構物。綜合上述結果,本研究構築之RNAi質體具有抑制血管生成素之效果,且所建立之培養系統,雖能提供子宮內膜上皮細胞-表現如體內般之正常形態,然如何可使其形成胞飲突之培養條件仍需更進一步探討,使此系統可應用於未來探討Ang對鼠胚著床前之影響。
A group of homologous ribonucleases (RNases) belonged to the RNase A superfamily has been isolated and characterized from various species. During the past decades, a lot of efforts have been devoted to the study of RNases, including DNA cloning, analyses of their catalytic activities and structures. However, little is known about the biological functions of the ubiquitous RNases in vivo, especially RNase 5, the angiogenin. Recently, it was demonstrated that the gene expression could be blocked after injection of double-stranded RNA (dsRNA) into organisms and the phenomenon is called RNA interference (RNAi). The RNAi is mediated by 19-23 nucleotide dsRNAs homologous in sequence to the target genes to silence cognate genes post-transcriptionally, which involves mRNA degradation. Consequently, it shows the gene knockdown or knockdown-like effects. Hence, the aims of this study were to investigate the effects of angiogenin on the embryonic implantation by knocking down the expression of angiogenin (Ang) in mouse blastocysts, in addition to establishment of an in vitro culture system for early implantation study. In Experiment 1, the specific primers for Ang-1, Ang-2 and Ang-4 were designed to analyze the expression of pattern in mouse blastocysts by reverse transcription polymerase chain reaction (RT-PCR). The results showed that only Ang-1 was expressed at the blastocyst stage in mice. In Experiment 2, the different regions in the DNA sequences of Ang-1 and Ang-2 were selected and subcloned into RNAi expression vector, in which short hairpin RNAs were derived by U6 promoter. After transfected into B16-F10 mouse cell line, the expression of Ang-1 and Ang-2 were analyzed by RT-PCR. The RT-PCR results demonstrated that the expression of angiogenin was decreased to at least 40% by various RNAi expression vectors. In Experiment 3, the U6-sh-1 (RNAi expression cassette for knocking down Ang-1) or U6-shR-1 (RNAi expression cassette for knocking down RNase 1) fragments were injected into the pronuclei of mouse zygotes. The cleavage rates in the U6-sh-1-injected and U6-shR-1 injected groups were significantly lower than those in the uninjected control group after 72 h culture in vitro (77 % and 81% v.s. 95%, P < 0.05). No significant differences of morula/blastocyst formation were found between U6-sh-1-injected and U6-shR-1-injected groups (77% v.s. 81%, P > 0.05), but the development of morula/blastocyst in the U6-sh-1-injected or U6-shR-1 group was significantly decreased, compared to the control group (49% and 48% v.s. 90%, P < 0.05). The defective effects of U6-sh-1 and U6-shR-1 on the development of preimplantation embryos were demonstrated. Immunofluorescent staining showed that U6-sh-1 injection reduced Ang-1 protein levels in the blastocysts compared to those in the control group. In Experiment 4, the endometrial epithelial cells and stromal cells were isolated from mouse uteruses. For construction of the 3-dimensional culture system, epithelial cells were seeded on an artificial basal membrane (ECMatrix™) with underlying stromal cells embedded in the type I collagen matrix. The whole system was settled in a Millicell® (Millipore) hanging in a 24-well culture plate. The morphology of epithelial cells on the matrix became cuboidal after culture. Additionally, the columnar appearance with a basal nucleus was observed on the paraffin wax sections of epithelial cells. The mouse blastocysts were recovered and cultured in this model system. Normal hatching and attachment of the blastocyst were observed. The endometrial cells grown in the established in vitro culture system appeared similar morphology as those in vivo, suggesting this model system might facilitate further understanding of the cellular and molecular mechanisms involving in the implantation of mammalian embryos. In conclusion, the DNA-based shRNA constructs produced in this study could effectively decrease the expression of Ang-1. Further studies would be required to elicit the optimal culture conditions for the in vitro implantation model before applied to the study of the effect of angiogenin on the implantation.
目錄 頁次
文獻檢討 ............................................................................................................. 1
一、哺乳動物胚著床之調控............................................................................... 1
(一)不同動物之著床模式與現象........................................................... 1
(二)著床前子宮內膜之變化................................................................... 2
1. 子宮內膜容受期.............................................................................. 2
2. 蛻膜化.............................................................................................. 3
3. 胞飲突.............................................................................................. 4
4. 腔狀上皮細胞連結之變化.............................................................. 4
5. 上皮細胞醣蛋白複合物之變化...................................................... 4
(三)囊胚之黏附....................................................................................... 5
1. 整合素.............................................................................................. 5
2. Basigin.............................................................................................. 6
3. Trophinin-tastin-bystin complex.................................................... 6
(四) 滋養葉細胞之侵入.......................................................................... 7
(五) 其他調控著床之因子...................................................................... 7
1. 卵巢荷爾蒙下流調控基因.............................................................. 7
2. 上皮細胞生長因子家族.................................................................. 8
3. 血管內皮生長因子.......................................................................... 8
4. 細胞素.............................................................................................. 9
二、小分子RNA對基因轉錄後之調控.......................................................... 10
(一)小分子干擾素RNA......................................................................... 10
(二)基因轉錄後之寂靜機制-RNAi作用............................................... 10
(三)導入dsRNA或siRNA表現型載體之策略................................... 12
1. 浸泡法與餵飼法.............................................................................. 12
2. 顯微注射法...................................................................................... 12
3. 電穿孔法.......................................................................................... 12
4. 陽離子脂質體轉染法...................................................................... 13
5. 病毒感染法...................................................................................... 13
三、血管生成素之發現..................................................................................... 13
(一)血管生成素家族............................................................................... 14
(二)血管生成素之功能........................................................................... 14
1. 促血管生成素之機制...................................................................... 14
(1)內皮細胞增生之調控................................................................. 15
(2)Ang於內皮細胞之訊息途徑..................................................... 16
2. 核糖核酸水解作用.......................................................................... 16
3. 病原菌毒殺與抗發炎作用.............................................................. 17
4. 協助卵巢形態改變與卵子成熟...................................................... 18
試驗一 Ang家族於小鼠E3.5胚之表現........................................................... 19
ㄧ、前言........................................................................................................... 19
二、材料與方法 ............................................................................................. 19
(一)小鼠Ang-1、Ang-2與Ang-4引子專一性之測試......................... 19
(二)試驗小鼠之取得及飼養管理........................................................... 26
(三)小鼠超級排卵與配種....................................................................... 26
(四)著床前E3.5胚之取得..................................................................... 26
(五)胚之免疫細胞化學染色................................................................... 26
(六)著床前小鼠胚total RNA之萃取.................................................... 27
(七)反轉錄酶連鎖反應分析小鼠Ang家族之表現.............................. 28
三、結果........................................................................................................... 31
四、討論........................................................................................................... 34
試驗二 不同序列片段Ang-1-RNAi與Ang-2-RNAi抑制載體之抑制效果 35
一、前言 .......................................................................................................... 35
二、材料與方法 .............................................................................................. 35
(一)細胞株之體外培養與繼代............................................................... 35
(二)Ang-1 shRNA與Ang-2 shRNA載體之製備................................. 36
(三)Ang-1-shRNA與Ang-2-shRNA表現載體之轉染........................ 43
(四)反轉錄聚合酶鏈鎖反應分析轉染後Ang-1與Ang-2之表現....... 43
(五)影像與統計分析 ............................................................................. 47
三、結果 ......................................................................................................... 47
(一)B16-F10細胞株之轉染效果 ......................................................... 47
(二)分析轉染不同 Ang 1-shRNA與Ang2-shRNA表現載體後Ang-1與Ang-2之表現量..........................................................................
48
四、討論 ......................................................................................................... 54
試驗三 顯微注射U6-sh1對於鼠胚體內與體外發育之影響 ......................... 55
一、前言 ......................................................................................................... 55
二、材料與方法 ............................................................................................. 55
(一)試驗小鼠之來源與飼養管理 ......................................................... 55
(二)小鼠超級排卵與配種 ..................................................................... 55
(三)胚操作液及培養液之配製............................................................... 55
(四)原核期鼠胚之取得........................................................................... 56
(五)顯微注射用基因片段之製備........................................................... 56
(六)顯微注射工具之備製 ..................................................................... 57
(七)原核期鼠胚之基因顯微注射操作 ................................................. 58
(八)注射後鼠胚之體外培養 ................................................................. 58
(九)胚之免疫螢光細胞染色 ................................................................. 61
(十)反轉錄聚合酶鏈鎖反應分析注射後之鼠胚 ................................. 61
(十一)統計分析....................................................................................... 63
三、結果 ......................................................................................................... 63
四、討論 ......................................................................................................... 67
試驗四 小鼠體外體外著床培養系統之建立..................................................... 68
ㄧ、前言........................................................................................................... 68
二、材料與方法 ............................................................................................. 68
(一)試驗小鼠之來源及飼養管理........................................................... 68
(二)小鼠超級排卵與配種....................................................................... 68
(三)細胞培養液之配置........................................................................... 68
(四)懷孕母鼠子宮內膜上皮細胞與基質細胞之分離........................... 69
(五)免疫化學染色................................................................................... 69
(六)子宮內膜上皮細胞與基質細胞共培養所構築之體外著床培養系統.......................................................................................................
70
(七)光學與電子顯微鏡之觀察............................................................... 70
(八)助孕素對於培養系統之影響........................................................... 72
(九)E3.5胚之取得與共培養.................................................................. 72
三、結果 ......................................................................................................... 72
(一)分離之子宮內膜上皮細胞與基質細胞之細胞特性分析............... 72
(二)體外著床培養系統之石蠟切片與掃描式電子顯微鏡之觀察....... 74
(三)囊胚於體外系統之共培養............................................................... 80
四、討論 ......................................................................................................... 81
結論 ..................................................................................................................... 84
參考文獻............................................................................................................... 85
附錄1.................................................................................................................... 97
附錄2 ................................................................................................................... 98

圖目錄
圖一、著床模式之分類……............................................................................... 1
圖二、Ang family 序列之比較......................................................................... 25
圖三、血管生成素家族引子專一性測試......................................................... 32
圖四、Ang家族於E3.5胚之表現..................................................................... 33
圖五、小鼠Ang-1序列與shRNA之標定區域................................................. 38
圖六、小鼠Ang-2序列與shRNA之標定區域................................................. 38
圖七、pUC-19表現載體、Ang-1-RNAi與Ang-2-RNAi表現片段之構築...
40
圖八、B16-F10細胞株轉染後GFP之表現.....................................................
48
圖九、B16-F10細胞株轉染U6-sh-1表現載體後Ang-1與actin之表現量. 49
圖十、B16-F10細胞株轉染Ang1-RNAi表現載體後Ang-1/actin之表現
量.............................................................................................................
50
圖十一、B16-F10細胞株轉染U6-sh-2-1表現載體後Ang-2與actin之表
現量.........................................................................................................
51
圖十二、B16-F10細胞株轉染U6-sh-2-2表現載體後Ang-2與actin之表
現量.........................................................................................................
51
圖十三、B16-F10細胞株轉染U6-sh-2-3表現載體後Ang-2與actin之表
現量.........................................................................................................
52
圖十四、B16-F10細胞株轉染Ang1-RNAi表現載體後Ang-2/actin之表現
量...,,........................................................................................................
53
圖十五、小鼠之原核顯微注射與體外培養....................................................... 59
圖十六、免疫螢光染色法分析注射U6-sh-1、U6-shR-1片段後之囊胚與
經處理之囊胚….....................................................................................
64
圖十七、小鼠受精卵經顯微注射U6-sh-1與U6-shR-1,以RT-PCR分析其
Ang-1與actin之表現量….....................................................................
65
圖十八、鼠胚經U6-sh-1或U6-shR-1注射至原核後後,Ang-1 / actin之表
現.............................................................................................................
66
圖十九、上皮細胞與基質細胞共培養所構築之體外著床培養系統…........... 71
圖二十、小鼠子宮內膜上皮細胞與基質細胞之免疫化學染色....................... 73
圖二十一、小鼠子宮內膜上皮細胞之分離、培養與蘇木紫-伊紅染色......... 75
圖二十二、掃描式電子顯微鏡觀察E3.5小鼠之子宮角.................................. 77
圖二十三、掃描式電子顯微鏡觀察小鼠體外著床培養系統........................... 78
圖二十四、小鼠囊胚黏附於體外著床系統.......................................................
80

表次
表一、小鼠受精卵經顯微注射U6-sh-1與U6-shR-1體外培養72 h之發
育……………………………………………………………………….
60
參考文獻
王世寬。2005。應用核醣核酸擾作用抑制小鼠胚血管生成素之表現。碩士論文。國立中興大學畜產學系。
Ancelin, M., H. Buteau-Lozano, G. Meduri, M. Osborne-Pellergin, S. Sordello, J. Plouet and M. Perrot-Applanat. 2002. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc. Natl. Acad. Sci. U. S. A. 99: 6023-6028.
Aplin, J. D. and S. J. Kimber. 2004. Trophoblast-uterine interactions at implantation. Reprod. Biol. Endocrinol. 2: 48-59.
Armant, D. R., H. A. Kaplan and W. J. Lennarz. 1986. Fibronectin and laminin promote in vitro attachment and outgrowth of blastocysts. Dev. Biol. 116: 519-523.
Arnold, J. T., D. G. Kaufman, M. Seppälä and B. A. Lessey. 2001. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum. Reprod. 16: 836-845.
Bagis, H., H. O. Mercan, H. Sagirkaya and G. Turgut. 2003. The effect of genetic background on the in vitro development of mouse embryo in potassium simplex optimized mudium supplemented with amino acds(KSOMAA)。Turk. J. Vet. Anim. Sci. 27: 409-415.
Barton, D. P., A. Cai, K. Wendt, M. Young, A. Gamero and S. De Cesare. 1997. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin. Cancer Res. 3: 1579-1586.
Bausero, P., F. Cavaille, G. Meduri, S. Freitas and M. Perrot-Applanat. 1998. Paracrine action of vascular endothelial growth factor in the human endometrium: production and target sites, and hormonal regulation. Angiogenesis 2: 167-182.
Bentin-Ley, U. and A. Lopata. 2000. In vitro models of human blastocyst implantation. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14: 765-774.
Beier, H. M. and Beier-Hellwig K. 1998. Molecular and cellular aspects of endometrial receptivity. Hum. Reprod. Update 4: 448-458.
Bhatt, H., L. J. Brunet and C. L. Stewart. 1991. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc. Natl. Acad. Sci. U. S. A. 88: 11408-11412.
Biggers, J. D., L. K. McGinnis and M. Raffin. 2000. Amino acid and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63: 281-293.
Biswas, C., Y. Zhang, R. DeCastro, H. Guo, T. Nakamura, H. Kataoka and K. Nabeshima. 1995. The human tumor cell-derived collagnease stimulatory factor is a member of the immunoglobulin superfamily. Cancer Res. 55: 434-439.
Bond, M. D and D. J. Strydom. 1989. Amino acid sequence of bovine Angiogenin. Biochemistry 28: 6110-6113.
Bond, M. D. and B. L. Vallee. 1990. Isolation and sequencing of mouse Angiogenin DNA. Biochem. Biophys. Res. Commun. 171: 988-995.
Bond, M. D. D. J. Strydom and B. L. Vallee. 1993. Characterization and sequencing of rabbit, pig and mouse angiogenins: discernment of functionally important residues and regions. Biochim. Biophys. Acta. 1162: 177–186.
Brown, W. E., N. Valentina, V. Subramanian and R. Shapiro. 1995. The mouse angiogenin gene family: structure of angiogenin-related protein gene and two pseudogenes. Genomics 29: 200-206.
Brummelkamp, T. R., R. Bernard and R. Agami. 2002. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2: 243-247.
Burghardt, R. C., G. A. Johnson, L. A. Jaeger, H. Ka, J. E. Garlow, T. E. Spencer and F. W. Bazer. 2002. Integrins and extracellular matrix proteins at the maternal- fetal interface in domestic animals. Cell Tissue Organ 172: 202-217.
Buchon, N. and C. Vaury. 2006. RNAi: a defensive RNA-silencing against viruses and transposable elements. Nature 96:195-202.
Carson, D. D., I. Bagchi, S. K. Dey, A. C. Enders, A. T. Fazleabas, B. A. Lessey and K. Yoshinaga. 2000. Embryo implantation. Dev. Biol. 223: 217-37.
Chakraborty, I., S. K. Das and S. K. Dey. 1995. Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. J. Endocrinol. 147: 339-352.
Chen, J. R., J. R. Cheng, T. Shatzer, L. Sewell, L. Hernandez and C. L. Stewart. 2000. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 141: 4365-4372.
Cho, S., J. J. Beintema and J. Zhang. 2005. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomic 85: 208-220.
Chopra, V., T. V. Dinh, E. V. Hannigan. 1997. Serum levels of interleukins, growth factors and Angiogenin in patients with endometrial cancer. J. Cancer Res. Clin. Oncol. 123: 167-172.
Cork, B. A., T. C. Li, M. A. Warren and S. M. Laird. 2001. Transient activation of Jun N-terminal kinases and protection from apoptosis by the insulin-like growth factor I receptor can be suppressed by dicumarol. J. Biol. Chem. 276: 19244-19252.
Cullinan, E. B., S. J. Abbondanzo, P. S. Anderson, J. W. Pollard, B. A. Lessey and C. L. Stewart. 1996. Leukemia inhibitory factor ( LIF ) and LIF receptor expression in human endometrium suggests a potential autocrine / paracrine function in regulating embryo implantation. Proc. Natl. Acad. Sci. U. S. A. 93: 3115-3120.
Das, S. K., X. N. Wang, B. C. Paria, D. Damm, J. A. Abraham, M. Klagsbrun, G.. K. Andrews and S. K. Dey. 1994. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120: 1071-1083.
Das, S. K., S. Yano, J. Wang, D. R. Edwards, H. Nagase and S. K. Dey. 1997. Expression of matrix metalloproteinases and tissue inhibitors of metallopreoteinases in the mouse uterus during the peri-implantation period. Dev. Genet. 21: 44-54.
Das, S. K., N. Das, J. Wang, H. Lim, B. Schryver, G. D. Plowman and S. K. Dey. 1997. Expression of betacellulin and epiregulin genes in the mouse uterus temporally by the blastocyst solely at the site of its apposition is coincident with the “window” of implantation. Dev. Biol. 190: 178-190.
Dey, S. K. H. Lim, S. K. Das, J. Reese, B. C. Paria, T. Daikoku and H. Wang. 2004. Molecular cues to implantation. Endocr. Rev. 25: 341-373.
Dimitriadis, E., C. A. White, R. J. Jones and L. A. Salamonsen. 2005. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum. Reprod. Update 11: 613-630.
Donze, O. and D. Picard. 2002. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 30: e46.
Elbashir, S. M., J. Martinez, A. Patkaniowska, W. Lendeckel and T. Tuschl. 2001. Functional anatomy of siRNAs for mediating efficient RNAi in in Drosophila melanogaster embryo lysate. EMBO J. 20: 6877-6888.
Elbashir, S. M., J. Harborth, K. Weber and Thomas Tuschla. 2002. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199-213.
Fazleabas, A. T. and Z. Strakova. 2002. Endometrial function: cell specific changes in the uterine environment. Mol. Cell. Endocrinol. 186: 143-147.
Feinberg, R. F., H. J. Kliman and C. J. Lockwood. 1991. Is oncofetal fibronectin a trophoblast glue for human implantation? Am. J. Pathol. 138: 537-543.
Fett, J. W., D. J. Strydom, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee. 1985. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24: 5480-5486.
Ferrara, N., H. Chen, T. Davis-Smyth, H. P. Gerber, T. N. Nguyen, D. Peers, V. Chisholm, K. J. Hillan and R. H. Schwall. 1998. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4: 336-340.
Filipowicz, W., L. Jaskiewicz, F. A. Kolb and R. S. Pillia. 2005. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15: 331-341.
Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Drever and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.
Flavell, R. B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. U.S.A. 91: 3490-3496.
Fu, X and M, P. Kamps. 1997. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts. Mol. Cell Biol. 17: 1503-1512.
Fukuda, M. N., T. Sato, J. Nakayama, G. Klier, M. Mikami, D. Aoki, and S. Nozawa. 1995. Trophinin and tastin, a novel cell adhesion molecule complex with potential potential involvement in embryo implantation. Gene Dev. 9: 1199-1210.
Fukuda, M. N., and S. Nozawa. 1999. Trophinin, tastin, and bystin: a complex mediating unique attachment between trophoblastic and endometrial epithelial cells at their respective apical cell membranes. Semin. Reprod. Endocrinol. 17: 229-234.
Geisert, R. D. and J, R, Malayer. 2000. Implantation in “ Reproduction in farm animals”, ed. B. Hafez and E. S. E. Hafez. pp. 126-139. Philadelphia. Lippincott Williams and Wilkins.
Gitlin, L. and R. Andino. 2003. Nucleic acid-based immune system: the antiviral 22 potential of mammalian RNA silencing. J. Virol. 77: 7159-7165
Gospodarowicz, D., J. Cheng, G. M. Lui, A. Baird, F. Esch and P. Bohlen. 1985. Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117: 2383-2391.
Holloway, D. E., M. C. Hares, R. Shapiro, V. Subramanian and K. R. Acharya. 2001. High-level expression of three members of the murine Angiogenin family in Escherichia coli and purification of the recombinant proteins. Protein Expr. Purif. 22: 307-317.
Hammond, S. M., E. Bernstein, D. Beach and G. J. Hannon. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-296.
Harper, J.W and B. L. Vallee. 1989. A covalent Angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry 28: 1875-1884.
Hasuwa, H., K. Kaseda, T. Einarsdottir and M. Okabe. 2002. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532: 227-230.
Hewitt, S. C., B. J. Deroo, K. Hansen, J. Collins, S. Grissom, C. A. Afshari and K. S. Korach. 2003. E2 receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to E2. Mol. Endocrinol. 17: 2070- 2083.
Hoffman, L. H., G. E. Olson and D. D. Carson. 1998. Progesterone and implanting blastocysts regulate Muc-1 expression in rabbit uterine epithelium. Endocrinology 139: 266-271.
Hooper, L. V., S. S. Thaddeus, V. H. Chieu, and G. I. Jeffrey. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunology 4: 269-273.
Hu, G. F. 1997. Limited proteolysis of angiogenin by elastase is regulated by plasminogen. J. Protein Chem. 16: 669-679.
Hu, G.. F. 1998. Neomycin inhibits angiogenin-induced angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 95: 9791–9795.
Hu, G. F. and J. F. Riordan. 1993. Angiogenin enhances actin acceleration of plasminogen activation. Biochem. Biophys. Res. Commun. 197: 682–687
Hu, G. F., J. F. Riordan and B. L. Vallee. 1997. A putative Angiogenin receptor in Angiogenin-responsive human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 94: 2204-2249.
Hu, G. F., J. F. Riordan and B. L. Vallee. 1994. Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associatedproteolytic activities. Proc. Natl. Acad. Sci. U. S. A. 91: 12096-12100.
Hu, G. F., D. J. Strydom, J. W. Fett, J. F. Riordan and B. L. Vallee. 1993. Actin is a binding protein for Angiogenin. Proc. Natl. Acad. Sci. U. S. A. 90: 1217-1221.
Hutvagner, G.. 2005. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett. 579: 5850-5857.
Ichimiya, H., O. Hino, Y. Kohara and N. Ishii. 2003. VBP-1 is necessary morphogenesis in Caenorhabditis elegans. Oncol. Rep. 10: 293-295.
Igakura, T., K. Kadomatsu, T. Kaname, H. Muramatsu, Q. W. Fan, T. Miyauchi, Y. Toyama, N. Kuno, S. Yuasa, M. Takahashi, T. Senda, O. Taguchi, K. Yamamura, K. Arimura and T. Muramatsu. 1998. A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev. Biol. 194: 152-65.
Isaka, K., S. Usuda and H. Ito. 2003. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblast. Placenta 24: 53-64.
Iiingworth, I. M., I. Kiska, S. Bagley, G.. W. Ireland, D. W. Garrod and S. J. Kimber. 2000. Desmosomes are reduced in the mouse uterine luminal epithelium during the pre-implantation period of pregnancy: A mechanism for facilitating implantation. Biol. Reprod. 63: 1764-1773.
Jagla, B., N. Aulner, P. D. Kelly, D. Song, A. Volchuk, A. Zatorski, D. Shum, T. Mayer, D. A. De Angelis, O. Ouerfelli, U. Rutishauser and J. E. Rothman. 2005. Sequence characteristics of functional siRNAs. RNA 11: 864-872.
Kim, D.-H., M. A. Behlke, S. D. Rose, M.-S. Chang, S. Choi and J. J. Rossi. 2005. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23: 222-226.
Kimber, S. J. and C. Spanswick. 2000. Blastocyst implantation: the adhesion cascade. Semin. Cell Dev. Biol. 11: 77-92.
Ku, S. Y., Y. M. Choi, C. S. Suh, S. H. Kim, J. G.. Kim, S. Y. Moon, J. Y. Lee and Y. S. Kim. 2003. Effect of Superovulation on the Expression of Tissue Inhibitor of Metalloproteinase-3 in the Murine Endometrium. Gynecol. Obstet. Invest. 55: 1-6.
Kuno, N., K. Kadomatsu, Q. W. Fan, M. Hagihara, T. Senda, S. Mizutani and T. Muramatsu. 1998. Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett. 425: 191-194.
Lanteri, E., M. Pistritto, G. Bartoloni, S. Cordaro, F. Stivala and C. Montoneri. 1998. Expression of alpha6 and beta4 integrin subunits on human endometrium throughout the menstrual cycle and during early pregnancy. Fertil. Steril. 69: 37-40.
Lee, H. S, I. S. Lee, T. C. Kang, G. B. Jeong and S. I. Chang. 1999. Angiogenin is involved in morphological changes and angiogenesis in the ovary. Biochem. Biophys. Res. Commun. 257: 182-186.
Lee, K. Y. and F. J. Demayo 2004. Animal models of implantation. Reprodcution 128: 679-695.
Leland, P. A., K . E. Staniszewski, C. Park, B. R. Kelemen and R. T. Raines. 2002. The ribonucleolytic activity of angiogenin. Biochemistry 41: 1343-1350.
Lindenberg, S., P. Hyttel, A. Sjøgren and G. Torben. 1989. A comparative study of attachment of human, bovine and mouse blastocysts to uterine epithelial monolayer. Hum. Reprod. 4: 446-456.
Liu, S., D. Yu, Z. P. Xu, J. F. Riordan, and G. F. Hu. 2001. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 287: 305-310.
Luetteke, N. C., T. H. Qiu, S. E. Fenton, K. L. Troyer, R. F. Riedel, A. Chang and D. C. Lee. 1999. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126: 2739-2750.
Lydon, J. P., F. J. Demayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery, G. Shyamala, O. M. Conneely and B. W. O’Malley. 1995. Mice lacking P4 receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9: 2266-2278.
Ma, W. G., H. Song, S. K. Das, B. C. Paria and S. K. Dey. 2003. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. U. S. A. 100: 2963-2968.
Malamitsi-Puchner, A., A. Sarandakou, S. G. Baka, J. Tziotis, D. Rizos, D. Hassiakos and G.. Creatsas. 2001. Concentrations of angiogenic factors in follicular fluid and oocyte-cumulus complex culture medium from women undergoing in vitro fertilization: association with oocyte maturity and fertilization. Fertil. Steril. 76: 98-101.
Mann, G. B., K. J. Fowler, A. Gabriel, E. C. Nice, R. L. Williams and A. R. Dunn. 1993. Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy, and curly whisers and often develop corneal inflammation. Cell 73: 249-261.
Mchugh, K. P., K. Hodivala-Dilke, M. H. Zheng, N. Namba, J. Lam, D. Novack, X. Feng, F. P. Ross, R. O. Hynes and S. L. Teitelbaum. 2000. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105: 433-440.
Meseguer, M., J. D. Aplin, P. Caballero-Campo, J. E. O''Connor, J. C. Martin, J. Remohi, A. Pellicer and C. Simon. 2001. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol. Reprod. 64: 590-601.
Miyagishi, M. and K. Taira. 2002. U6 promoter-driven siRNAs with four uridine 3'' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20: 497-500.
Montesano, R. and L. Orci. 1987. Phorbol esters induce angiogenesis in vitro from large-vessel endothelial cells. J. Cell. Physiol. 130: 284-291.
Moroianu, J. and J. F. Riordan. 1994a. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc. Natl. Acad. Sci. U. S. A. 91: 1677–1681.
Moroianu, J. and J. F. Riordan. 1994b. Identification of the nuclear targeting signal of human angiogenin. Biochem. Biophys. Res. Commun. 203: 1765–1772.
Moses, M. A. and R. Langer. 1991. A metalloproteinase inhibitor as an inhibitor of neovascularization. J. Cell Biochem. 47: 230-235.
Montgomery, M. K. and A. Fire. 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14: 255-258.
Mulac-Jericevic, B., J. P. Lydon, F. J. DeMayo and O. M. Conneely. 2003. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl. Acad. Sci. U. S. A. 100: 9744-9749.
Nobile, V., B. L. Vallee and R. Shapiro. 1996. Characterization of mouse angiogenin-related protein–implications for functional studies on angiogenin. Proc. Natl. Acad. Sci. U. S. A. 93: 4331–4335.
Nikas, G., O. H. Develioglu, J. P. Toner and H. W. Jones. 1999. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum. Reprod. 14: 787-792.
Nykanen, A., B. Haley, P. D.Zamore. 2001. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107: 309-321.
Paddison, P. J., A. A. Caudy and G. J. Hannon. 2002. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 99: 1443-1448.
Paria, B. C., J. Reese, S. K. Das and S. K. Dey. 2002. Deciphering the cross-talk of implantation: advances and challenges. Science 296: 2185-2188.
Park, D. W., D. S. Choi, H. S. Ryu, H. C. Kwon, H. Joo and C. K. Min 2003. A well-defined in vitro three-dimensional culture of human endometrium and its applicability to endometrial cancer invasion. Cancer Lett. 195: 185-192.
Pavlov, N. E. Hatzi, Y. Bassaglia, J. L.Frendo, D. Evain-Brion, and B. Josette. 2003.
Angiogenin distribution in human term placenta and expression by cultured trophoblastic cells. Angiogenesis 6: 317–330.
Petersen, A., U. Bentin-Ley, V. Ravn, K. Qvortrup, S. Sørensen, H. Islin, A. Sjögren, M. Sietse, and L. Hamberger. 2005. The antiprogesterone Org 31710 inhibits human blastocyst-endometrial interactions in vitro. Fertil. Steril. 83 Suppl. 1: 1255-1263.
Phillips, H. S, J. Hains, D. W. Leung and N. Ferrara. 1990. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127: 965-967.
Pierro, E., F. Minici, O. Alesiani, F. Miceli, C. Proto, I. Screpanti, S. Mancuso and A. Lanzone. 2001. Stromal-epithelial interactions modulate estrogen responsiveness in normal human endometrium. Biol. Reprod. 64: 831-838.
Potter, S. W., G.. Gaza and J. E. Morris. 1996. Estradiol induces E-cadherin degradation in mouse uterine epithelium during the estrous cycle and early pregnancy. J. Cell Physiol. 169: 1-14.
Qin, X. F., D. S. An, I. S. Chen and D. Baltimore. 2003. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. U. S. A. 100: 183-188.
Qiu, Q., M. Yang, B. Tsang and A. Gruslin. 2005. Fas ligand expression by maternal decidual cells is negatively correlated with the abundance of leukocytes present at the maternal–fetal interface. J. Reprod. Immuno. 65: 121-132.
Raines, R. T., M. P. Toscano, D. M. Nierengarten, J. H. Ha and R. Auerbach. 1995. Replacing a surface loop endows ribonuclease A with angiogenic activity. J. Biol. Chem. 270: 17180-17184.
von Rango, U., J. Alfer, S. Kertschanska, B. Kemp, G. Muller-Newen, P. C., H. M. Beier and I. Classen-Linke. 2004. Interleukin-11 expression: its significance in eutopic and ectopic human implantation. Mol. Hum. Reprod. 10: 783-792.
Reese, J., N. Brown, S. K. Das and S. K. Dey. 1998. Expression of neu differentiation factor during the periimplantation period in the mouse uterus. Biol. Reprod. 58: 719-727.
Reynolds, A., D. Leake, Q. Boese, S. Scaringe, W. S. Marshall and A. Khvorova. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22: 326-330.
Reynolds, L. P, S. D. Killilea, and D. A. Redmer. 1992. Angiogenesis in the female reproductive system. FASEB J. 6:886-892
Reynolds, L. P., A. T. Grazul-Bilska, S. S. Killilea, and D. A. Redmer. 1994. Mitogenic factors of corpora lutea. Prog. Growth Factor Res. 5: 159-175.
Riordan, J. F. and B. L.Vallee. 1988. Human Angiogenin, an organogenic protein. Br. J. Cancer 57: 587-590.
Robb, L., R. Li, L. Hartley, H. H. Nandurkar, F. Koentgen and C. G. Begley. 1998. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nature Medicine 4: 303-308.
Salomon, D. S. and M. I. Sherman. 1975. Implantation and invasiveness of mouse blastocysts on uterine monolayer. Exp. Cell Res. 90: 261-268.
Schlafke, S. and Enders A. C. 1975. Cellular basis of interaction between trophoblast and uterus at implantation. Biol. Reprod. 12: 41-65.
Schleef, R. R. and D. J. Loskutoff. 1988. Fibrinolytic system of vascular endothelial cells. Role of plasminogen activator inhibitors. Haemostasis 18: 328-41.
Schultz, J. F., L. Mayernik, U. K. Rout and D. R. Armant. 1997. Integrin trafficking regulates adhesion to fibronectin during differentiation of mouse peri-implantation blastocysts. Developmental Genetics 21: 31-43.
Song, H., H. Lim, B. C. Paria, H. Matsumoto, L. L. Swift, J. Morrow, J. V. Bonventre and S. K. Dey. 2002. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ''on-time'' embryo implantation that directs subsequent development. Development 129: 2879-2889.
Shapiro, R., D. J. Strydom, K. A. Olson and B. L. Vallee 1987. Isolation of angiogenin from normal human plasma. Biochemistry 26: 5141–5146.
Shapiro, R., S. Weremowicz, J. F. Riordan and B. L. Vallee. 1987. Ribonucleolytic
activity of angiogenin: essential histidine, lysine, and arginine residues. Proc. Natl. Acad. Sci. U. S. A. 84: 8783-8787.
Shapiro, R. and B. L. Vallee. 1987. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. U. S. A. 84: 2238-2241.
Shiotani, M., N. Yoichi and T. Mori. 1993. Embryo-dependent induction of uterine receptivity assessed by an in vitro model of implantation in mice. Biol. Reprod. 49: 794-801.
Shimoyama, S., F. Gansauge, S. Gansauge, G. Negri, T. Oohara and H. G. Beger. 1996. Increased Angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res. 56: 2703-2706.
Staun-Ramand, R. and E. Shalev. 2005. Human trophoblast function during the implantation process. Reproductive Biology and Endocrinology 3: 56-67.
St Clair, D. K., S. M. Rybak, J. F. Riordan and B. L. Vallee. 1988. Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of 40S ribosomes. Biochemistry. 27: 7263-7268.
Steinhelper, M.E. and L. J. 1992. Assignment of the angiogenin gene to mouse chromosome 14 using a rapid PCR-RFLP mapping technique. Genomics. 12: 177-179.
Stewart, C. L. and E. B. Cullinan. 1997. Preimplantation development of the mammalian embryo and its regulation by growth factors. Dev. Genet. 21: 91-101.
Strydom, D. J., J. W. Fett, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee. 1985. Amino acid sequence of human tumor derived angiogenin. Biochemistry 24: 5486-5494.
Strydom, D. J. 1998. The Angiogenins. Cell. Mol. Life Sci. 54: 811-824.
Sugiyama, T., H. Cam, A. Verdel, D. Moazed and S .I. S. Grewa. 2005. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. U. S. A. 102:152-157.
Sui, G., C. Soohoo, E. B. Affar, F. Gay , Y. Shi, W. C. Forrester and Y. Shi. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 99: 5515-5520.
Sutherland, A. E., P. G. Calarco and C. H. Damsky. 1993. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119: 1175-1186.
Suzuki, N., D. Nadano, C. Bibhash, C. Paria, S. Kupriyanov, K. Sugihara and M. N. Fukuda. 2000. Trophinin expression in the mouse uterus coincides with implantation and is hormonally regulated but not induced by implanting blastocyst. Endocrinology 141: 4247-4254.
Tan, Y., D. Tan, M. He, M. Gu, Z. Wang, G. Zeng and E. Duan. 2004. A model for implantation: co-culture of blastocysts and uterine endometrium in mice. Biol. Reprod. 72: 556-561.
Timmons, L. and A. Fire. 1998. Specific interference by ingested dsRNA. Nature 395: 854.
Torry, D. S., V. J. Holt, J. A. Keenan, G. Harris, M. R. Caudle and R. J. Torry. 1996. Vascular endothelial growth expression in cycling human endometrium. Fertil. Steril. 66: 72-80.
Tuschi, T., P. D. Zamore, R. Lehmann, D. P. Bartel and P. A. Sharp. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13: 3191-3197.
Wang, L., J. P. Zhou, Y. K. Liu and W. Zhang. 2004. Ultrastructural study on implantation of mouse blastocysts on an in vitro three-dimensional endometrium. Reproduction and Contraception 6: 330-343.
Werb, Z., C. L. Mainardi, C. A. Vater and E. D. Jr. Harris. 1977. Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N. Engl. J. Med. 296: 1017–1023.
Wianny, F. and M. Zernicka-Goetz. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. cell Biol. 2: 70-75.
Wimsatt, W. A. 1975. Some comparative aspects of implantation. Biol. Reprod. 12: 1-40.
Xiao, L. J., H. Chang, N. Z. Ding, K. Kadimatsu and Z. M. Yang. 2002. Basigin expression and hormonal regulation in mouse uterus during the peri-implantation period. Mol. Reprod. Dev. 63: 47-54.
Xu, Z. P., T. Tsuji, J. F. Riordan, G. F. Hu. 2002. The nuclear founction of Angiogenin in endothelail cells is related to rRNA production. Biochem. Biophy. Res. Commun. 294: 287-292.
Yoshinaga, K and C. E. Adams. 1996. Delayed implantation in the spayed progesterone treated adult mouse. J. Reprod. Fertil. 12: 593-595.
Yoshinari, K., M. Miyagishi, K. Taira. 2004. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 32: 691-699.
Yu, J. Y., S. L. DeRuiter and D. L. Turner. 2002. RNA interference by expression of
short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 99: 6047-6052.
Zamore, P. D., T. Tuschl, P. A. Sharp and D. P. Bartel. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25-33.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top