跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鍾嵐
研究生(外文):Chung-Lan Huang
論文名稱:含感測電路的FET微濕度感測器
論文名稱(外文):Integrated FET Micro-Humidity Sensors with readout circuit
指導教授:戴慶良
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:76
中文關鍵詞:濕度感測器MOSFET三氧化鎢感濕薄膜
外文關鍵詞:MOSFEThumiditytungsten trioxidefilm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文設計以台積電0.35μm 2P4M CMOS製程,設計有別於一般常見到的電容式及電阻式濕度感測器。此微濕度感測器包含了感測MOS、感濕薄膜、溫度感測及電路的部份;感測MOS的部份主要是通入閘極電壓,進而在源極和汲極之間的電子反轉層產生電流。感測MOS的通道長度為4μm、寬度為100μm,並採用陣列式的結構,藉此放大電流。所選用的感測薄膜對於水汽,有良好的靈敏度,其合成採用溶膠凝膠法,可有效地降低成本。溫度感測的部份,採用繞線狀的poly層作為溫度感測器,從電阻的變化感測溫度。而後將源極和汲極之間產生的電流搭配上電路,將電流轉換成輸出電壓,藉由輸出電壓的改變,達到感測相對濕度的目的,此設計即為MOSFET型式微濕度感測器。
此研究以CMOS製程整合FET微濕度感測器與電路於單一晶片上,並且利用溶膠凝膠法製作三氧化鎢之感濕薄膜,有效地降低了製作成本,並利用三氧化鎢吸附水氣之後,釋放電子的特性,進而完成感測濕度的效果。於實驗數據顯示,在溫度25°C下,感測25~85%的相對濕度,輸出電壓的變化量為45mV,靈敏度
為7.5mV/ %RH 。
The MOSFET (metal oxide semiconductor field effect transistor) micro humidity sensors are manufactured by TSMC 0.35 μm CMOS(complementary metal oxide semiconductor). This study is different from the capacitive or resistant humidity sensors. The MOSFET humidity sensors includes sensing MOS﹐circuits, temperature sensors and sensing film. The sensing MOS generates a change in current when supplying a voltage to the gate of sensing MOS. The length and width of gate in the sensing MOS are 4 μm and 100 μm, respectively. In order to increase the current variation the humidity sensors are designed as an array of sensing MOS. The sensing film is sensitive to vapor water, which it is prepared by the sol-gel process and calcined at 300℃ for 4 hours. In this way﹐we can effectly decrease the cost. The temperature sensors is designed using the polysilicon layer of the CMOS process. The temperature sensors have a change in resistance as the temperature varies. A circuit is used to convert the current variation into the output voltage.
Experimental results show that the sensitivity of the sensor is 7.5mV/ %RH at 25℃ under the humidity range of 25-85 % RH.
致謝 i
中文摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
 1.1 前言 1
 1.2 文獻回顧 2
 1.3 研究動機 6
第二章 結構及設計 7
 2.1 感測器的設計 8
  2.1.1 感測區 8
  2.1.2 量測電路及模擬 10
2.1.3 溫度感測 15
 2.2 感測原理 17
 2.3 三氧化鎢的性質 18
第三章 FET濕度感測器製作 22
 3.1 晶片佈局 22
 3.2 晶片的後製程 22
 3.3 三氧化鎢的製備 25
 3.4 晶片的後製程與打線 38
第四章 實驗結果與討論 44
 4.1 量測架構 44
 4.2 實驗結果 45
  4.2.1 閘極輸入電壓1V 45
  4.2.2 閘極輸入電壓0.7V 50
 4.3 溫度感測 55
4.4 結果與討論 56
第五章 結論與未來展望 58
附錄A 不同通道長度的濕度感測區域 59
附錄B 電路Hspice檔 65
附錄C 恆溫恆濕機操作手冊 67
附錄D 濕度表示法 71
附錄E PH meter使用方法 72
參考文獻 73




















表目錄
[1] T. Hubert, “Humidity-sensing materials,” MRS Bulletin, Vol. 24, No. 6, pp. 49-54 , 1999.
[2] Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, “A CMOS humidity sensor with on-chip calibration,” Sensors and Actuators A, Vol. 92, No. 1-3, pp. 80-87 , 2001.
[3] C. Laville and C. Pellet, “Interdigitated humidity sensors for a portable clinical microsystem,” IEEE Transactions on Biomedical Engineering, Vol. 49, No. 10, pp. 1162-1167, 2002.
[4] J. Laconte, V. Wilmart, D. Flandre,and J.-P. Raskin, “High-sensitivity capacitive humidity sensor using 3-layer pattern polyimide sensing film,” IEEE Sensors, Vol 1, pp. 372-377, 2003.
[5] C. Y. Lee, and G. B. Lee, “MEMS-bases humidity sensors with integrated temperature sensors for signal drift compensation,”IEEE Sensors, Vol 1, pp. 384-388, 2003.
[6] B. Okcan, and T. Akin,“A Thermal conductivity based humidity sensor in a standard CMOS process,” IEEE Micro Electro Mechanical Systems, pp. 552-555, 2004.
[7] P. G. Su, C. J. Ho, Y. L. Sun,and I. C. Chen, “A micromachined resistive-type humidity sensor with a composite material as sensitive film,” Sensors and Actuators B, pp. 837-842, 2005.
[8] S. P. Lee, J. Y. Cha, Y. K. Yoon,and S. J. Kim, “FET humidity sensors based on titanium oxide film,” IEEE Properties and Applications of Dielectric Materials, pp. 1066-1069, 1997.
[9] S. Chakraborty , K. Nemoto, K. Hara,and P. T. Lai, “Moisture sensitive field effect transistors using SiO2/Si3N4/Al2O3 gate structure,” Sensors and Actuators B,
pp.274-277, 1999.
[10] K. Bradley, J. Cumings, A. Star,and G. Gruner, “Influence of mobile ions on nanotube based FET devices,” Nano Letters, Vol. 3, No. 5, pp.639-641, 2003.
[11] W. Qu, and J. Meyer, “ Thick-film humidity sensor based on porous MnWO4
material ,” Meas. Sci. Technol, Vol. 8, pp. 593-600, 1997.
[12] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun,and S. K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications,” Sensor and Actuators B, pp. 104-109, 1998.
[13] I. Porqueras,and E. Bertran, “Efficiency of Li doping on electrochromic WO3 thin films,” Thin Solid Films, pp. 129-133, 2000.
[14] L. L. W. Chow, M. M. F. Yuen, P. C. H. Chan, and A. T. Cheung, “Reactive
sputtered TiO2 thin film humidity sensor with negative substrate bias,” Sensors
and Actuators B, Vol. 76, pp. 310-315, 2001.
[15] S. Pokhrel,and K. S. Nagaraja, “Electrical and humidity sensing properties of Chromium(III) oxide–tungsten(VI) oxide composites,” Sensors and Actuators B, Vol. 92, pp. 144–150, 2003.
[16] J. Zhang ,and L. Gao, “Synthesis and characterization of nanocrystalline tin oxide by sol-gel method,” Journal of Solid Chemistry, Vol. 177, pp. 1425-1430, 2004.
[17] D. Zhang, Z. Deng, J. Zhang,and L. Chen, “Microstructure and electrical properties of antimony-doped tin oxide thin film deposited by sol-gel process,” Materials Chemistry and Physics, Vol. 98, pp. 353-357, 2006.
[18] N. Parvatikar, S. Jain, S. Khasima, M. Revansiddappa, S.V. Bhoraskar,and M.V.N. A. Prasad, “Electrical and humidity sensing properties of polyaniline/WO3 composites,” Sensors and Actuators B, Vol. 114, pp. 599–603, 2006﹒
[19] W. D. Kingery, H. K. Bowen,and D. R. Uhlmann, “ Introduction to Ceramics ”, 2nd edition, Wiley-Interscience Publication, pp. 841-912 ,1975.
[20] S. M. Sze, “Semiconductor Sensors,” John Wiley and Sons, pp. 388-396, 1994.
[21] I. Ruokamo, T. Kärkkäinen, J. Huusko, T. Ruokanen, M. Blomberg, H. Torvela, and V. Lantto, “H2S response of WO3 thin-film sensors manufactured by silicon processing technology,” Sens. Actu. B, Vol. 18, pp. 486-488, 1994.
[22] C. Cantalini, M. Pelino, H. T. Sun, M. Faccio, S. Santucci, L. Lozzi, and M. Passacantando, “Cross sensitivity and stability of NO2 sensors from WO3 thin film,” Sens. Actu. B, Vol. 35, pp. 112-118, 1996.
[23] Cs. Balazsi,and J. Pfeifer, “Structure and morphology changes caused by wash treatment of tungstic acid precipitates,” Solid State Ionics, Vol. 124, pp. 73–81, 1999.
[24] Y. Choi, G. Sakai, K. Shimanoe, N. Miura,and N. Yamazoe, “ Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method ,” Sensors and Actuators B, Vol. 87, pp. 63–72, 2002.
[25] I. Jimenez, J. Arbiol, A. Cornet,and J. R. Morante, “Structural and gas-sensing properties of WO3 nanocrystalline powders obtained by a sol-gel method from tungstic acid,” IEEE Sensors Journal, Vol. 2, No. 4, pp. 329-335, 2002.
[26] 葉奇青,以CMOS標準製程製作感溫元件及運算放大器之研究, 華梵大學碩士論文, 2000.
[27] 陳美杏,微型半導體式氧氣感測器之設計製作與測試, 成功大學工程科學系碩士論文, 2003.
[28] 翁祥益,含電路的整合型濕度感測器之製作, 中興大學機械工程學系碩士論文, 2005.
[29] 陳富松,含三氧化鎢薄膜和感測電路之整合型微濕度感測器, 中興大學精密工程研究所碩士論文, 2006.
[30] 楊志偉,含感測電路的整合型微壓力感測器, 中興大學機械工程學系碩士論文, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top