跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宜翩
研究生(外文):Yi-Pian Lin
論文名稱:彩色海芋黃化斑點病毒雙極性基因體MRNA與負極性基因體LRNA與其他Tospovirus屬之病毒比較
論文名稱(外文):Comparison of the Ambisense M RNA and Negative SenseL RNA of Calla Lily Chlorotic Spot Virus with those ofOther Tospoviruses
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Shyi-Dong Yeh
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:80
中文關鍵詞:彩色海芋黃化斑點病毒基因體西瓜銀班病毒血清群
外文關鍵詞:tospovirusCalla lily chlorotic spot virusWSMoV serogroup
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
台灣新發現的彩色海芋黃化斑點病毒 (Calla lily chlorotic spot virus, CCSV) 經由S RNA 全長、L RNA 高度保留區域的解序比對,以及製備多元抗體、單元抗體偵測CCSV與其他Tospovirus屬病毒-西瓜銀班病毒 (Watermelon silver mottle virus, WSMoV) 的交互反應,已證實CCSV為蕃茄斑萎病毒屬中西瓜銀班病毒血清群 (WSMoV serogroup) 之ㄧ員。為了進一步研究CCSV在分子層次上的特性,本研究對其M 及L RNA 進行解序及分析。CCSV M RNA 之核苷酸序列,全長4,704個核苷酸,其RNA具有雙極性蛋白轉譯策略,病毒股對應產生34.6 kDa的非結構性蛋白 NSm,而其互補股則對應產生127.5 kDa的醣蛋白 GN/GC。其NSm及GN/GC蛋白,與番茄斑萎病毒 (Tomato spotted wilt virus, TSWV)、鳶尾花黃斑病毒 (Iris yellow spot virus, IYSV)、鳳仙花疽斑病毒 (Impatiens necrotic spot virus, INSV)比對,僅有29-62%的相同度;而與同屬於WSMoV serogroup的WSMoV、花生頂芽壞疽病毒 (Peanut bud necrosis virus, PBNV)、辣椒黃化病毒 (Capsicum chlorotic virus, CaCV),以及親緣關係相近的甜瓜黃斑病毒 (Melon yellow spot virus,MYSV) 比對,則有64-81%較高的相同度。分析CCSV與其他tospoviruses GN/GC蛋白的轉譯後修飾,CCSV與WSMoV, PBNV, CaCV, MYSV之GN/GC蛋白發生裂解位置 (Signal peptidase cleavage site)、膜穿透區域 (Transmembrane region),醣苷化位置 (N-linked, O-linked glycosylation site)以及胺基酸序列均較其他番茄斑萎病毒群 (tospoviruses) 相近,顯示CCSV屬於WSMoV 血清群 (WSMoV serogroup)。此外,TSWV,番茄黃斑病毒 (Tomato chlorotic spot virus, TCSV),落花生輪斑病毒 (Groundnut ringspot virus, GRSV),INSV的GN/GC蛋白皆具有與薊馬傳播相關的胺基酸保留區域 (精胺酸-甘胺酸-天冬胺酸) (Arginine-glycine-aspartic acid, RGD domain);而CCSV, WSMoV, PBNV, CaCV, IYSV則不具有RGD domain,推測可能與傳播不同血清群病毒之薊馬種類不同有關。CCSV L RNA經解序後,全長8,911個核苷酸,其RNA具有負極性轉譯蛋白策略,病毒互補股對應產生322 kDa的複製酶 (RdRp) (L protein)。其 L蛋白 (L protein) 與TSWV,INSV比對,僅有43-45%相同度;而與WSMoV, PBNV, CaCV, MYSV比對,則有74-77%的較高相同度。分析CCSV與其他tospoviruses L蛋白的胺基酸序列,皆具有已報導過的病毒複製酶高度保留區域 A, B, C, D, E, F (RdRp conserved motifs A-F),也發現1, 2, 3, 4, 5, 6 胺基酸序列高度保留區域 (L protein conserved regions 1-6)。從複製酶的演化關係圖可見,CCSV與WSMoV serogroup最相近;而Tospovirus屬與Bunyaviridae 科中Bunyavirus屬的關係較與Phlebovirus 屬及Hantavirus屬的關係要接近。此外,在CCSV與其他tospoviruses L RNA上的比對,五個L RNA 序列保留區域a, b, c, d, e具有21個高相似度的核苷酸,具有設計成人工微核糖核酸 (artificial miRNA) 以建構基因轉殖作物的潛力,達到作物廣泛抗tospoviruses的目的。經由CCSV與其他tospoviruses L RNA上的比對,我們設計三組簡併式性的引子 (degenerate primers),分別是根據L基因高度保留區2以及高度保留區F所設計的引子對t2740, t3920; 及根據NSm基因高度保留區所設計的引子對tNSm410, tNSm870能夠分別增幅出不同血清群的tospoviruses: WSMoV, CaCV, CCSV, MYSV, TSWV, GRSV, INSV, IYSV, 番茄黃果輪點病毒 (Tomato yellow fruit ring virus, TYFRV)其L gene與 NSm geneg上的核苷酸片段, 大小分別為1.18 kbp與0.46 kbp。 使用tNSm410, tNSm870還能夠增幅出落花生黃化扇斑病毒(Peanut chlorotic f an-spot virus,PCFV)上較其他tospoviruses NSm片段小的DNA產物,可能是因為PCFV親緣關係較其他tospoviruses遠;因此tNSm410, tNSm870的偵測效果較t2740 t3920廣泛,效果也較優良。而根據GNGC基因高度保留區所設計的引子對WG1, WG960可以增幅出WSMoV血清群的tospoviruses: WSMoV, CaCV, CCSV, 以及IYSV血清群的tospoviruses: IYSV和TYFRV, 和MYSV其GNGC gene上的核苷酸片段,大小約為0.96 kbp;其他如TSWV血清群的tospoviruses: TSWV, GRSV, 以及INSV血清型、PCFV血清型均無法被偵測。因此,使用WG1, WG96能夠區別亞洲型與歐美型的病毒。此三組簡併式引子對可用來檢測田間罹患各種不同tospoviruses的作物,深具應用潛力。
ABSTRACT
Calla lily chlorotic spot virus (CCSV) has been classified as a distinct tospovirus belonging to Watermelon silver mottle virus (WSMoV) serogroup. To further characterize the relationships of CCSV with members of WSMoV serogroup, the nucleotide sequences of M RNA and L RNA of CCSV were determined by cloning and sequencing the cDNA fragments amplified by reverse transcription-polymerase chain reaction (RT-PCR). The complete sequence of CCSV M RNA contains 4,704 nucleotides in length. The CCSV M RNA encodes a nonstructural (NSm) protein of 309 amino acids in the viral strand, and a GN/GC protein precursor of 1,123 amino acids in the viral complementary strand. The NSm protein of CCSV shares amino acid identities of 37-39% with those of TSWV and INSV, 57-72% with those of MYSV, IYSV, WSMoV, CaCV and PBNV. In additon, the GN/GC protein precursor of CCSV shares amino acid identities 32-34% with those of TSWV and INSV, 64-73% with that of MYSV, CaCV, WSMoV, and PBNV. Our results indicate that both NSm protein and GN/GC protein of CCSV share higher amino aicd identities with those of WSMoV serogroup tospoviruses. The complete sequence of CCSV L RNA contains 8,911 nucleotides in length. The L RNA is of negative polarity, encoding L protein in the viral complementary strand with a predicted Mr of 332 kDa. L protein of CCSV shares low amino acid identities of 43-45% with those of TSWV and INSV; but it shares higher amino acid identities of 74-77% with those of MYSV, CaCV, PBNV, and WSMoV. Comparison of the deduced L protein of CCSV with that of the other members of the family Bunyaviridae indicated that its amino acid sequence include six conserved motifs A, B, C, D, E, and F of RNA-dependent RNA polymerases (RdRp). Additional conserved regions among tospoviral regions 1, 2, 3, 4, 5, and 6 were also identified. A phylogenetic cladogram of the RdRp indicated that CCSV belongs to the WSMoV serogroup of the genus Tospovirus and has a closer relationship with the viruses of genus Bunyavirus than with those of the genera Phlebovirus and Hantavirus. Multiple nucleotide alignments of L RNAs of CCSV with those WSMoV, PBNV, CaCV, MYSV, TSWV and INSV showed that there are several L RNA conserved regions at the nucleotide level among WSMoV serogroup or all tospoviruses. Five L RNA conserved regions a, b, c, d, and e containing 21 conserved nucleotides were suggested as an artificial micro RNA targeting sites for construction of transgenic crops with broad-spectrum resistance against tospoviruses. The degenerate primer pairs t2740/t3920 and tNSm410/tNSm870 were designed from the conserved regions of L RNA of WSMoV, PBNV, CaCV, CCSV, MYSV, TSWV, INSV and the conserved regions of NSm ORFs of WSMoV, PBNV, CaCV, CCSV, MYSV, TSWV, TCSV, GRSV, INSV, respectively, for amplification of the targeted regions of tospoviruses. The positions of degenerate primer t2740 was located in RdRp conserved region 2, and t3920 in conserved motif F. Tospoviruses with different serogroups or serotypes: WSMoV, CCSV, CaCV, MYSV, TSWV, GRSV, INSV, IYSV, and TYRV were detected by using the primer pairs. The amplified product obtained from PCFV-infected N. benthamiana was formed with size less than 0.46 kbp by using tNSm410/tNSm870. This may due to PCFV has no serological relationship with other tospoviruses. Our results indicated that degenerate primer pair tNSm410/tNSm870 have a better ability for broad-spectrum detection of tospoviruses from field crops. Degenerate primer pair WG1/WG960 were designed from the conserved regions of GNGC ORFs of WSMoV, PBSV, CaCV, CCSV, MYSV, and IYSV for amplification of a 0.96 kbp GNGC fragment of WSMoV, IYSV serogroup tospoviruses, or MYSV by RT-PCR. No cDNA products were obtained from TSWV, INSV, GRSV, or PCFV-infected plants of N. benthamiana. Degenerate primer pair WG1/WG960 have a potential to be used as a diagnosis tool to differentiate Asian type tospoviruses from European type tospoviruses.
目 錄

中文摘要 1

英文摘要 3

Literature Review 5

Discovery and classification of tospovirus 5

Morphology and genome organization of tospovirus 5

Tospoviruses species and taxonomy 6

Maturation of tospoviruses 8

Relationship of thrips with the tospoviruses 10

Discovery and classification of Calla lily chlorotic spot virus (CCSV) 14

Host range of CCSV 16

Introduction 17

Materials and Methods 21

Virus sources and propagation 21

Isolation of total RNA 21

Reverse transcriptation-polymerase chain reaction (RT-PCR) and cloning of the cDNA of M RNA and L RNA 21

Cloning the 5''- and 3''- terminal regions of CCSV M RNA and L RNA 24

Sequence analysis of M RNA of CCSV and L RNA 25

Post-translational modification of CCSV Glycoproteins 26

Detection of different serogroup tospoviruses by RT-PCR
using degenerate primers by RT-PCR 27

Results 29

Nucleotide sequence of CCSV M RNA and L RNA 29

Characteristics of terminal sequences and the intergenic region 30

Comparison of the NSm and GN/GC genes with those of other tospoviruses 30

Comparison of the RdRp gene with those other tospoviruses 31

Conserved L RNA regions of tospoviruses for artificial miRNA designing 33

Detection of different serogroup tospoviruses by RT-PCR using degenerate primers by RT-PCR 33

Post-translational modification of CCSV Glycoproteins 34

Discussion 35

References 42

Figures and Tables 54
REFERENCES

Adam, G., Yeh, S. D., Reddy, D. V. R., and Green, S. K. 1993. Serological comparison of tospovirus isolates from Taiwan and India with Impatiens necrotic spot virus and serogroups of tomato spotted wilt virus. Arch. Virol. 130:237-250.
Adkins, S., Choi, T. J., Israel, B. A., Bandla, M. D., and Richmond, K. E. 1996. Baculovirus expression and processing of Tomato spotted wilt tospovirus glycoproteins. Phytopathology 86: 849-855.
Akula, S. M., Pramod, N. P., Wang, F. Z., and Chandran, B. 2002. Integrin α3β1(CD49c/29) is a cellular receptor for Kaposi'' s sarcoma-associated Herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407-419.
Amin, P. W., Reddy, D. V. R., and Ghanekar, A. M. 1981. Transmission of Tomato spotted wilt virus, causal agent of bud necrosis virus of peanut, by Scirthothrips dorsalis and Frankliniella schultzei. Plant Dis. 65:663-665.
Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297 (2004).
Bezerra, I. C., Resende, R. O., Pozzer, L., Nagata, T., Kormelink, R., and De Avila, A. C. 1999. Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89:823-830.
Brittlebank, C. C. 1919. Tomato disease. J. Agric. Victoria. 17:213-235.
Bruenn, J. A. 2003. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res. 31:1821-1829.
Bucher, E., Sijin, T., de Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol.
Chen, C. C., Chen, T. C., Lin, Y. H., and Yeh, S. D. 2005. A Chlorotic Spot Disease on Calla Lilies (Zantedeschia spp.) Is Caused by a Tospovirus Serologically but Distantly Related to Watermelon silver mottle virus. Plant Dis. 89:440-445.
Chen, C. C., and Chiu, R. J. 1996. A tospovirus infecting peanut in Taiwan. Acta Hortic. 431:57-67.
Chen, C. C., Choa, C. H., and Chiu, R. J. 1996. Studies on host range, transmission and electron microscopy of Peanut chlorotic fan-spot virus in Taiwan. Bull. Taichung Dist. Agri. Improv. Sta. 52:59-68.
Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., and Yeh, S. D. 2001. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Virology 91:361-368.
Chu, F. H., Chao, C. H., Peng, Y. C., Lin, S. S., Chen, C. C., and Yeh, S. D. 2001. Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology 91:856-863.
Chu, F. H., and Yeh, S. D. 1998. Comparison of ambisense M RNA of Watermelon silver mottle virus with other tospoviruses. Phytopathology 88:351-358.
Cortes, I., Livierations, I. C., Derks, A., Peters, D., and Kormelink, R. 1998. Molecular and serological characterization of Iris yellow spot virus, a new and distinct tospovirus species. Phytopathology 88:1276-1282.
Cortes, I., Saaijer, J., Wongjkaew, K. S., Pereira, A. M., Goldbach, R., Peters, D., and Kormelink, R. 2001. Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Arch. Virol. 146:265-278.
Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. 1979. A model of evolutionary change in proteins In: M. O. Dayhoff, ed. Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Silver Spring, vol 5, pp. 345-352.
de Assis Filho, F. M., Deom, C. M., and Sherwood, J. L. 2004. Acquisition of Tomato spotted wilt virus by adults of two thrips species. Phytopathology 94:333-336.
de Avila, A. C., Huguenot, C., Resende, R. d. O., Liveira Resende, R., and Kitakima, E. W. 1990. Serological differentiation of 20 isolates of Tomato spotted wilt virus. J. Gen. Virol. 71:2801-2827.
de Haan, P., Kormelink, R., Resende, R. d. O., liveira Resende, R., van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71:2207-2216.
de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R. 1989. Molecular cloning and terminal sequence determination of the S and M RNAs of Tomato spotted wilt virus. J. Gen. Virol. 70:3469-3473.
de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R. W. 1990. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71:1001-1007.
DeAngelis, J. D., Sether, D. M., and Rossignol, P. A. 1993. Survival, development and reproduction in western flower thrips (Thysanptera: Thripidae) exposed to Impatiens necrotic spot virus. Environ. Entomol. 22:1308-1312.
DeAngelis, J. D., Sether, D. M., and Rossignol, P. A. 1994. Transmission of Impatiens necrotic spot virus in peppermint by western flower thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 87:197-201.
Derks, A. F. L. M., and Lemmers, M. E. C. 1996. Detection of tospoviruses in bulbous crops and transmission by vegetative propagation. Acta Hortic. 432:132-139.
Duijsings, D., Kormelink, R., and Goldbach, R. 2001. In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements EMBO J. 20:2545-2552.
Elliot, R. M. 1990. Molecular biology of Bunyaviridae. J. Gen. Virol. 71 501-522.
Elliot, R. M., Bouloy, M., Calisher, C. H., Goldbach, R., Moyer, J. T., Nichol, S. T., and Pettersson, R. 2000. Bunyaviridae. In:Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses. van Regenmortal MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR and Wicknewr RB (eds) Academic Press, San Diego, USA: pp 617-621.
Fox, G., Parry, N. R., Barnett, P. V., McGinn, B., Rowlands, D. J., and Brown, F. 1989. The cell attachment site on Foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J. Gen. Virol. 70:625-637.
Franki, R. I. B., Fauquet, C. M., Knudson, D. L., and Brown, F. 1991. Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. pp 2:450.
Fujisawa, I., Tanaka, K., and Ishii, M. 1988. Tomato spotted wilt virus transmissibility by three species of thrips, Thrips setosus, Thrips tabaci and Thrips palmi. Annals of the Phytopathological Society of Japan 54:392.
Gardener, M. C., Tompkins, C. M., and Whipple, O. C. 1935. Spotted wilt of truck crops and ornamental plants. Phytopathology 25:17.
Gavrilovskaya, I. N., Brown, E. J., Ginsberg, M. H., and Mackow, E. R. 1999. Cellular entry of Hantaviruses which cause hemorrhagic fever with renal ryndrome is mediated by beta 3 Integrins. pp 3951-3959.
German, T. L., Ullman, D. E., and Moyer, J. W. 1992. Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu. Rev. Phytopathol. 30:315-348.
Gilbert, M. J. 1986. First African record of Scirtothrips dorsalis Hood (Thysanoptera, Thripida), a potential pest of citrus and other crops in southern Africa. J. Entomol. Soc. 49:159-161.
Goldbach, R., and Kuo, G. 1996. Introduction. In: The proceedings of the International Symposium on Tospovirus and Thrips of Floral and Vegetable Crops, Nov. 7-11, Taiwan Agricultural Research Institute, Wufeng, Taiwan. Acta Horticult. 431:21-26.
Groves, R. L., Walgenbach, J. F., Moyer, J. F., and Kennedy, G. G. 2002. The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of tomato spotted wilt virus. Plant Dis. 86:573-582.
Heinze, C., Mass, E., Adam, G., and Casper, R. 1995. The complete nucleotide sequence of the S RNA of a new Tospovirus species, representing serogroup IV. Phytopathology 85:683-690.
Jain, R. K., Pappu, R. H., Pappu, S. S., Krishna Reddy, M., and Vani, A. 1998. Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV. Arch. Virol. 143:1637-1644.
Jan, F. J., Chen, T. C., and Yeh, S. D. 2003. Occurence, importance, taxonomy and control of thrips-borne tospoviruses. Research Signpost. 37:391-411.
Johnson, R. R., Black, L. L., Hobbs, H. A., Valverde, R. A., Story, R. N., and Bond, W. P. 1995. Association of Frankliniella fusca and three winter weeds with Tomato spotted wilt virus in Louisiana. Plant Dis. 79:572-576.
Jones, D. R. 2005. Plant Viruses Transmitted by Thrips. Eur. J. Plant Pathol. 113:119-157.
Kato, K., Hanada, K., and Kameya-Iwaki, M. 1999. Transmission mode, host range and electron microscopy of a pathogen causing a new disease of melon (Cucumis melo) in Japan. Annals of the Phytopathological Society of Japan 65:624-627.
Kato, K., Hanada, K., and Kameya-Iwaki, M. 2000. Melon yellow spot virus: a distinct species of the genus Tospovirus isolated from melon. Phytopathology 90:422-426.
Kikkert, M., Verschoor, A. D., Kormelink, R., Peters, D., and Goldbach, R. 2001. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J. Virol. 75:1004-1012.
Knierim, D., Blawid, R., and Maiss, E. 2006. The complete nucleotide sequence of a capsicum chlorosis virus isolate from Lycopersicum esculentum in Thailand. Arch. Virol. 151:1761-1782.
Kolakofsky, D., and Hacker, D. 1991. Bunyavirus RNA synthesis : genome transcription and replication Curr. Top. Microbiol. Immunol. 169:143-157.
Kormelink, R., de Haan, P., Meurs, C., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of Tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73:2795-2804.
Kormelink, R., Storms, M., van Lent, J., Peters, D., and Goldbach, R. 1994. Expression and subcellular location of the NSM protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65.
Lakshmi, K. V., Wightman, J. A., Reddy, D. V. R., Ranga Rao, G. V., Buiel, A. A. M., and Reddy, D. D. R. 1995. Transmission of Peanut bud necrosis virus by Thrips palmi in India. In: Parker, B.L., Skinner, M., Lewis, T. (eds.), Thrips Biology and Management, Plenum Press, New York, pp 179-184.
Law, M. D., and Moyer, J. W. 1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J.Gen. Virol. 71:933-938.
Law, M. D., Speck, J., and Moyer, J. W. 1991. Nucleotide sequence of the 3'' noncoding region and N gene of the S RNA of a serologically distinct tospovirus. J. Gen. Virol. 72:2597-2601.
Law, M. D., Speck, J., and Moyer, J. W. 1992. The M RNA of Impatiens necrotic spot tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188:732-741.
Lin, Y. H., Chen, T. C., Hsu, H. T., and Liu, F. L. 2005. Serological comparison and molecular characterization for Verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus Serogroup. Phytopathology 95:1482-1488.
Ludwig, G. V., Israel, B. A., Christensen, B. M., Yuill, T. M., and Schultz, K. T. 1991. Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 181: 546-571.
Ludwig, S. W., and Oetting, R. D. 2002. Efficasy of Beauveria bassiana plus insect attractants for enhanced control of Frankliniella occidentalis (Thysanoptera: Thripidae). Fla. Entomol. 85:270-272.
McMichael. 2002. A new tospovirus Serogroup IV species infecting capsicum and tomato in Queensland Australas. Plant Pathol. 31:231-239.
Miyazaki, M., and Kudo, I. 1988. Bibliography and Host Plant Catalogue of Thysanoptera of Japan. Miscellaneous Publication of the National Institute of Agro-Environmental Sciences 3.
Mohamed, N. A. 1981. Isolation and characterization of subviral structures from Ttomato spotted wilt virus. J. Gen. Virol. 53:197-206.
Moritz, G., Kumm, S., and Mound, L. 2004. Tospovirus transmission depends on thrips ontogeny. Virus Res. 100:143-149.
Morse, J. G., and Hoddle, M. S. 2006. Invasion biology of thrips. Annu. Rev. Entomol. 51:67-89.
Mound, L. A. 1996. The Thysanoptera vector species of tospoviruses. Acta Hortic. 431:298-309.
Mound, L. A. 2001. So many thrips–so few tospoviruses? Thrips and Tospoviruses. In: Thrips and Tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera, Reggio Calabria, Italy:3-6.
Muller, R., Porch, O., Delarue, M., Bishop, D. H. L., and Bouloy, M. 1994. Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerase. J. Gen. Virol. 75:1345-1352.
Nagata, T., Inoue-Nagata, A. K., Smid, H. M., Goldbach, R., and Peters, D. 1999. Tissue tropism related to vector competence of Frankliniella occidentalis for Tomato spotted wilt tospovirus. J Gen Virol 80: 507-515.
Naidu, R. A., Deom, C. M., and Sherwood, J. L. 2001. First report of Frankliniella fusca as a vector of Impatiens necrotic spot tospovirus. Plant Dis. 85:1211-1212.
Nakahara, S., and Monteiro, R. C. 1999. Frankliniella zucchini (Thysanoptera: Thripidae), a new species and vector of tospovirus in Brazil. Proc. Entomol. Soc. Wash. 101:290-294.
Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., and Chua, N. H. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24:1420-1428.
Palmer, J. M., Reddy, D. V. R., Wightman, J. A., and Ranga Rao, G. V. 1990. New information on the thrips vectors of Tomato spotted wilt virus in groundnut crops in India. International Arachis Newsletter 7:24-25.
Perry, K. L., Miller, L., and Williams, L. 2005. Impatiens necrotic spot virus in greenhouse-grown potatoes in New York State. Plant Dis. 89:340.
Persley, D. M., Thomas, J. E., and Sharman, M. 2006. Tospoviruses an Australian perspective Australas. Plant Pathol. 35:161-180.
Pierschbacher, M. D., and Ruoslahti, E. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30-33.
Pittman, H. A. 1927. Spotted wilt of tomatoes. Preliminary note concerning the transmission of the spotted wilt of tomatoes by an insect vector (Thrips tabaci Lind.). Australian Council of Science and Industrial Research Bulletin 1:74-77.
Porch, O., Sauvaget, I., Delarue, M., and Noel, T. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8:3867-3874.
Reddy, D. V. R., Ranta, A. S., Sudarshana, M. R., Poul, F., and Kumar, I. K. 1992. Serological relationships and purification of bud necrosis virus, a tospovirus occuring in peanut (Arachis hypogaea L.) in India. Ann. Appl. Biol. 120:279-286.
Reddy, D. V. R., Sudarshana, M. R., Ratna, A. S., Reddy, A. S., Amin, P. W., Kumar, I. K., Murthy, A. K.1991. The occurrence of yellow spot virus, a member of the tomato spotted wilt group, on peanut (Arachis hypogaea L.) in India. In: Hsu, H. T., Lawson, R. H. (eds.), Virus-Thrips-Plant Interactions of Tomato spotted wilt virus. , National technical information service, Springfield, USA. pp 77-88
Roivainen, M., Piirainen, L., Hovi, T., Virtanen, I., and Riikonen, T. 1994. Entry of Coxsackievirus A9 into host cells: specific interactions with αvβ3 integrin, the vitronectin receptor. Virology 203:357-365.
Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
Sakurai, T., Inoue, T., and Tsuda, S. 2004. Distinct efficiencies of Impatiens necrotic spot virus transmission by five thrips vector species (Thysanoptera: Thripidae) of tospoviruses in Japan. Appl. Entomol. Zool. (Jpn.) 39:71-78.
Samule, G., Bald, J. G., and Pittman, H. A. 1930. Investigations on "spotted wilt" of tomatoes. Australia Commonwealth Coun. Sci. Ind. Res. Org. Bull. 44:1-64.
Satyanarayana, T., Gowda, S., Lakshminarayana Reddy, K., Mitchell, S. E., Dawson, W. O., and Reddy, D. V. R. 1998. Peanut yellow spot virus is a member of a new serogroup of Tospovirus genusbased on small (s) RNA sequence and organization. Arch. Virol. 143:353-364.
Satyanarayana, T., Mitchell, S. E., Reddy, D. V. R., Kresovich, S., Jarret, R., Naidu, R. A., Gowda, S., and Demski, J. W. 1996. The complete nucleotide sequence and genome organization of the M RNA segment of Peanut bud necrosis tospovirus and comparison with other tospoviruses. J. Gen. Virol. 77:2347-2352.
Sin, S. H., McNulty, B. C., Kennedy, G. G., and Moyer, J. W. 2005. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc. Natl. Acad. Sci. U.S.A. 102:5168-5173.
Singh, S. J., and Krishnareddy, M. 1995. Thrips flavus Scrank (Thysanoptera: Thripidae), a new insect vector of a tospovirus infecting watermelon in India Pest Manag. Sci 1:115-118.
Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., and Buck, C. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271-282.
Tas, P. W. L., Boerjan, M. L., and Peters, D. 1977. The structural proteins of Tomato spotted virus. J. Gen. Virol. 36:267-279.
Tusnády, G. E., and Simon, I. 1998. Principles governing amino acid composition of integral membrane proteins: Applications to topology prediction. J. Mol. Biol. 283:489-506.
Ullman, D. E., Westcot, D. M., Chenault, K. D., Sherwood, J. L., and German, T. L. 1995. Compartmentalization, intracellular transport, and autophagy of Tomato spotted wilt tospovirus proteins in infected thrips cells. Phytopathology 85:644-654.
Vaira, A. M., Semeria, L., Crespi, S., Lisa, V., Allavena, A., and Accotto, G. P. 1995. Resistance to tospoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: correlation between transgene expression and protection in primary transformants. Mol. Plant Microbe Interact. 8:66-73.
van den Hurk, J., Tas, P. W. L., and Peters, D. 1997. The ribonucleic acid of Tomato spotted wilt virus. J. Gen. Virol. 36:81-91.
van Regenmortel, M. H., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R., and Wickner, R. B. 2000. Virus taxonomy: Classification and nomenclature of viruses. Seventh Report of the International Committee on the taxonomy of Viruses. Academic Press.p. 599.
Verwoerd, T. C., Dekker, B. M. M., and Hoekema, A. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17:2362.
Vijayalaskshmi, K. 1994. Transmission and ecology of Thrips palmi Karny, the vector of peanut bud necrosis virus. Ph.D. thesis. Andrha Pradesh Agricultural University, Hyderabad, India.
Webb, S., Tsai, J., and Mitchell, F. 1998. Bionomics of Frankliniella bispinosa and its transmission of tomato spotted wilt virus. Abstracts: Tospoviruses and Thrips Research, Fourth International Symposium on Tospoviruses and Thrips in Floral and Vegetable Crops, Wageningen, The Netherlands:67.
Whitfield, A. E., Ullman, D. E., and German, T. L. 2004. Expression and characterization of a soluble form of Tomato spotted wilt virus glycoprotein GN. J. Virol. 78:13197-13206.
Whitfield, A. E., Ullman, D. E., and German, T. L. 2005. Tospovirus-Thrips Interactions. Annu. Rev. Phytopathol. 43:459-489.
Wijkamp, I., Almarza, N., Goldbach, R., and Peters, D. 1995. Distinct levels of specificity in thrips transmission of tospoviruses Phytopathology 85:1069-1074.
Wijkamp, I., and Peters, D. 1993. Determination of the median latent period of two tospoviruses in Frankliniella occidentalis, using a novel leaf disk assay Phytopathology 83:986-991.
Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E., and Carrington, J. C. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2: 642–652.
Yeh, S. D., Chao, C. H., Cheng, Y. H., and Chang, C. C. 1996. Serological comparison of four distinct Tospoviruses by polyclonal antibodies to purified nucleocapsid protein. Acta Hortic. 431:122-134.
Yeh, S. D., Lin, Y. C., Cheng, Y. H., Jih, C. L., Chen, M. J., and Chen, C. C. 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis. 76:835-840.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top