跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游宏偉
研究生(外文):Hung-Wei Yu
論文名稱:兩輪自平衡車之建模與控制
論文名稱(外文):Modeling and Control of a Self-Balancing Two Wheeled Scooter
指導教授:蔡清池
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:77
中文關鍵詞:兩輪自平衡車
外文關鍵詞:scooter
相關次數:
  • 被引用被引用:3
  • 點閱點閱:948
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在改善教學用途之自平衡兩輪電動車之系統設計、數學建模及適應控制。本文詳述該具有兩感測器的新型自平衡兩輪電動車,且重新嚴謹地推導該車輛之更詳細正確的數學模型。兩個古典比例微分與相位領先落後補償器被分別提出,進而產生合成的轉矩,驅動該車輛的兩直流馬達,用以達成自平衡與轉向控制之功能。該兩古典平衡轉向控制器可適用不同騎乘者以及不同地形,只需調整比例微分控制器的參數與相位領先落後補償器的增益值。在不調整參數旋鈕的條件下,兩適應調整器被提出達成該車輛之自平衡與轉向控制,且對不同騎乘者與不同地形產生幾乎一致的控制性能。經由許多實驗數據,本文所提的新型系統設計與控制策略,對不同的騎乘者與在不同地形下,皆具有優異實用的功效。
This thesis improves techniques for system design, modeling and adaptive control of a two-wheeled self-balancing scooter for pedagogical purposes. An improved self-balancing two-wheeled scooter with only two sensors is described and its more detailed and correct mathematical model of the scooter is rigorously re-derived. Two classical PD and lead-lag control laws are proposed for self-balancing and rotation control of the scooter, then generating composite torque for the two DC motors. Such controllers also perform well for different riders and different terrains by tuning the two knobs so as to directly alter the controllers’ parameters, such as the proportional and derivative gains, and the lead-lag controller’s gain. Without adjusting the two tuning knobs, two adaptive regulators are presented for the scooter ridden by different riders, thereby giving almost consistent control performance. Through experimental results, the proposed improved scooter together with the proposed control methods has been successfully shown powerful and useful for different riders.
Acknowledgements i
Chinese Abstract ii
English Abstract iii
Contents iv
List of Figures vi
List of Tables ix

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Literature Review 3
1.3 Motivation and Objectives 6
1.4 Main Contributions 7
1.5 Thesis organization 7

Chapter 2 Improved System Architecture and Mathematical Model…………………………………………………………………......9
2.1 Introduction 9
2.2 Improved Physical Structure 10
2.2.1 Motor Driver 11
2.2.2 Wheels and Motors 12
2.2.3 Power Supply System 13
2.2.4 Digital Signal Processor 14
2.2.5 Tilt Sensor 15
2.2.6 Potentiometer 17
2.2.7 Ultrasonic Sensor 18
2.2.8 Tunable Knobs 21
2.2.9 Integrated sensing system 21
2.3 Mathematical Modeling Revisited 22
2.4 Parameter Determination and Validation……………………………………………...33
2.5 Concluding Remarks ………………………………………………………… 36

Chapter 3 Classical Self-balancing and Rotation controller Design 37
3.1 Introduction 37
3.2 Control Architecture…………………………………………………………...38
3.3 PD and Lead-Lag Self-Balancing Controller Design 40
3.3.1 PD self-balancing controller design 40
3.3.2 Lead-lag self-balancing controller design……………………………...41
3.4 PD and Lead-lag Rotation Controller Design 42
3.4.1 PD rotation controller design 43
3.4.2 Lead-lag rotation controller design 44
3.5 Digitization of the PD and Lead-Lag controllers 45
3.5.1 Digitization of the PD controllers by backward difference method 46
3.5.2 Digitization of the Lead-Lag controllers by Bilinear Transformation 46
3.5.3 Digitization of the torque-to-speed conversion………………………...47
3.6 Experimental Results and Discussion 48
3.6.1 Experimental results of the PD and Lead-Lag self-balancing controllers……………………………………………………………..49
3.6.2 Experimental results of the PD and lead-lag rotation controllers……...52
3.6.3 Experimental results of the scooter on three different terrains………...55
3.7 Concluding Remarks…………………………………………………………58

Chapter 4 Adaptive Regulation for Self-Balancing and Rotation 59
4.1 Introduction 59
4.2Adptive Regulator Design for Self-Balancing 59
4.3 Adaptive Rotation Regulator Design…………………………………………..63
4.4 Experimental Results and Discussion 67
4.4.1. Digitalization of the proposed adaptive regulators 67
4.4.2 Experimental results of adaptive self-balancing and rotation regulation 69
4.5 Concluding Remarks 72

Chapter 5 Conclusions and Future Work…………………………………….73
5.1 Conclusions 73
5.2 Future Work 74
References 76
[1] “http://www.segway.com/”.
[2] T.Blackwell, “Building a Balancing Scooter ” http://www.tlb.org/scooter.htm1.
[3] Yuji Hosoda, Saku Egawa, Junichi Tamamoto, Kenjiro Yamamoto, and Ryousuke Nakamura ,”Basic Design of Human-Symbiotic Robot EMIEW,” proceedings of the 2006 IEEE/RSJ International Conference on intelligent Robots and Systems,October9-15,2006,Beijing,China. http://www.hitachi.com
[4] F. Grasser, A.D’Arrigo, and S. Colombi, “JOE: A Mobile, Inverted Pendulum,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp.107-114, February 2002.
[5] J.-S. Wang, “Walking control of a self-balancing two-wheeled robot,” M.S. Thesis, Department of Electrical Engineering, National Central University, June 2003.
[6] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd Ed., Addison Wesley, 1995.
[7] C.-Y. Cheng, Balancing control of a self-balancing two-wheeled robot, M.S. Thesis (in Chinese), Department of Electrical Engineering, National Central University, June 2003.
[8] Y.-X. Lin, “Balancing Control and Implementation of a Riderless Bicycle,” M.S. Thesis, Department of Electrical Engineering, National Chung Hsing University, June 2001.
[9] http://www.ai.mit.edu/projects/cardea/index.shtml
[10] H. K. Khalil, Nonlinear Systems, 3rd Ed., Prentice Hall, 2002.
[11] R. C. Dorf and R. H. Bishop, Modern Control Systems, 9th Ed, Hall, 2001.
[12] http://www.geology.smu.edu/~dpa-www/robo/nbot/
[13] http://www.tedlarson.com/robots/balancingbot.htm
[14] http://www.teamhassenplug.org/robots/legway/
[15] http://homepage.mac.com/sigfpe/Robotics/equibot.html
[16] Y.-H. Gu, Design and Control of a Personal Self-balancing Two-wheel Scooter, M.S. Thesis (in Chinese), Department of Electrical Engineering, National Chung Hsing University, June 2005.
[17] W.L Luo, Adaptive control of a two-wheeled self-balancing transporter, M.S. Thesis (in Chinese), Department of Electrical Engineering, National Chung Hsing University, June 2006.
[18] James H. Williams, Jr. Fundamentals of Applied Dynamics. By John Wiley & Sons,Inc. 1996.
[19] http://www.roboteq.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top