|
[1] B. C. Kuo, “Digital Control Systems,” 2nd edition, 1992. [8] J. Ackermann, “Robust control systems with uncertain physical parameters,” Springer-Verlag, 1993. [20] K. J. Astrom, and B. Wittenmark., “Computer controlled systems,” (Prentice-Hall, 1984). [24] W. M. Wonham, “Linear Multivariable Control : A Geometric Approach,” New York : Springer-Verlag,1974. [32] Emelyanov, S. V. : Variable structure control systems, Nauka, Moscow, 1967. [35] V. I. Utkin, “Sliding Mode and Their Applications in Variable Structure Systems,” Moscow : MIR, 1987. [44] Stephen Boyd, Laurent El Ghaoui, Eric Feron and Venkataramanan Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” Philadelphia, 1994. [2] Chang-Hua Lien, “Robust observer-based control of systems with state perturbations via LMI approach,” IEEE Trans. Automat. Contr., vol. 49, no. 8, AUGUST 2004. [3] Z. Ji, L, Wang, G. Xie and F. Hao, “Linear matrix inequality approach to quadratic stabilization of switched systems,” IEE Proc.-Control Appl., vol. 151, no. 3, MAY 2004. [4] Han Ho Choi, “LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Trans. Automatic. Contr., vol. 52, no. 4, APRIL 2007. [5] W. Chang, J. B. Park, H. J. Lee, and Y. H. Joo, “LMI approach to digital redesign of linear time-invariant systems,” Proc. IEE, Contr. Theory Appl,. vol. 149, no. 4, pp. 297-302, 2002. [6] A. Fujimori, “Optimization of static output feedback using substitutive LMI formulation,” IEEE Trans. Automat. Contr., vol. 49, no. 6, pp. 995-997, Jun.2004. [7] A. H. D. Markazi and N. Hori, “A new method with guaranteed stability for discretization of continuous- time control systems,” in Proc. Amer. Control Conf., Chicago, IL, pp. 1397-1402, 1992. [9] M. Chilali and P. Gahinet, “ Design with Pole Placement Constraints : an LMI Approach,” Proc. 33rd Conf. Decision and Control, pp. 553-558, Lake Buena Vista, Florida, 1994. [10] A. Trofino, “Parameter dependent Lyapunov functions for a class of uncertain linear systems : An LMI approach,” in Proc. 38th IEEE Conf. Decision and Control, Phoenix, AZ, pp. 2341-2346, 1999. [11] D. Ramos and P. Peres, “An LMI condition for the robust stability of uncertain continuous-time linear systems,” IEEE Trans. Autom. Control, vol. 47, no. 4, pp. 675-678, Apr. 2002. [12] L. S. Shieh, J. L. Zhang, and J. W. Sunkel, “A new approach to the digital redesign of continuous-time controllers,” Control Theory Adv. Technol., vol. 8, no. 1, pp. 37-57, 1992. [13] L. S. Shieh, Y. J. Wang, and J. W. Sunkel, “Hybrid state-space self-tuning control of uncertain linear systems”, Proc. Inst. Elect. Eng. D., vol. 140, no. 3, pp. 99-110, 1993. [14] L. S. Shieh, X. Zou, and N. P. Coleman, “Digital interval model conversion and simulation of continuous-time uncertain systems," Proc. Inst. Elect. Eng.-Control Theory Appl., vol. 142, pp. 315- 322, 1995. [15] L. S. Shieh, W. M. Wang, and J. W. Sunkel(1996), “Digital redesign of cascaded analogue controllers for sampled-data interval systems,” Proc. Inst. Elect. Eng., vol. 143, no. 11, pp. 489-498, 1996. [16] L. E. Sheen, J. S. H. Tsai, and L. S. Shieh, “Optimal digital redesign of continuous-time systems with input time delay and/or asynchronous sampling,” J. Franklin Inst., vol. 335B, no 4, pp. 605-616, 1996. [17] C. C. Hsu, K. M. Tse, and C. H. Wang, “Digital redesign of continuous systems with improved suitability using genetic algorithms-Electronics letters,” Electron . Lett., vol. 33, pp. 1345-1347, 1997. [18] N. Rafee, T. Chen, and O. P. Malik, “A technique for optimal digital redesign of analog controllers,” IEEE Trans. Control Syst. Technol., vol. 5, pp. 89- 99, 1997. [19] B. C. Kuo, “Digital control systems,” New York: Holt, Rinehart and Winston, pp. 321-338, 1980. [21] L. S. Shieh, J. L. Zhang and S. Ganesan., “Pseudo- continuous-time quadratic regulators with pole placement in a specific region,” IEE Proc. D, 137, (5), pp. 297-301, 1990. [22] J. S. H. Tsai., L. S. Shieh, and J. L. Zhang., “An improvement of the digital redesign method based on the block-pulse function approximation,” Circuits Syst. Signal Process., 12, (1), PP. 37-49, 1993. [23] D. Luenberger, “Observers for multivariable systems,” IEEE Trans. Control, vol 11, pp. 190-197, 1966. [25] D. C. Youla, J. J. Bongiorno, Jr., and C. N. Lu, “Single-loop feedback stabilization of linear multivariable dynamical plants,” Automatica, vol. 10, pp. 159-173, 1974. [26] A. B. Chammas and C. T. Leondes, “On the design of linear time-invariant systems by periodic output feedback : Part 1. Discrete-time pole assignment,” Int. J. Contr., vol. 27, pp. 885-894, 1978. [27] A. B. Chammas and C. T. Leondes, “On the finite time control of linear systems by piecewise constant output feedback,” Int. J. Contr., vol. 30, pp. 227- 234, 1979. [28] J. P. Greschak and G. C. Verghese, “Periodically varying compensation of time-invariant systems,” Syst. Contr. Lett., vol. 2, pp. 88-93, 1982. [29] P. P. Khargonekar, K. Poolla, and A. Tannenbaum, “Robust control of linear time-invariant plants using periodic compensation,” IEEE Trans. Automat. Contr., vol. AC-30, pp. 1088-1096, 1985. [30] T. Mita, B. C. Pang, and K.Z. Liu, “Design of optimal strongly stable digital control systems and application to output feedback control of mechanical systems,” Int. J. Contr., vol. 45, pp. 2071-2082, 1987. [31] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat . Contr., vol. AC-22, pp. 212-222, 1977. [33] V. I. Utkin, “Variable structure systems : Present and Futures,” Automatic and Remote Control, vol. 44, Pt 1, pp. 1105-1119, 1983. [34] O. M. E. El-Ghezawi, S. A. Billings, and A. S. I. Zinober, “Variable Structure Systems and Systems Zeros,” IEE Proc., vol. 130, Pt.D, pp. 1-5, 1983. [36] B. S. Heck, “Sliding-mode Control for Singularly Peturbed Systems,” Int. J. Control, vol. 53, No. 4, pp.985-1001, 1991. [37] B. M. Diong, and J. V. Medanic, “Dynamic Output Feedback Variable Structure Control for System Stabilization,” Int. J. Control, vol. 56, No. 3, pp. 607-630, 1992. [38] V. I. Utkin, “Application Oriented Trends in Sliding Mode Control Theory,” Proc. of IEEE IECON’93, Maui, HW, USA., pp. 1937-1942, 1993. [39] K. Furuta, “Sliding-Mode Control of a Discrete System,” Systems & Letters, vol. 14, pp. 145-152, 1990. [40] C. Y. Chan, “Servo-Systems with Discrete-Variable Structure Control,” Systems & Letters, vol. 17, pp. 321-325, 1991. [41] C. L. Hwang, “Design of Servo Controller via the Sliding Mode Technique,” IEE Proc., Part D. vol. 139, pp. 439-446, 1992. [42] S. K. Spurgeon, “Hyperplane Design Techniques for Discrete-Time Variable Structure Control Systems,” Int. J. Control, vol. 55, pp. 445-456, 1992. [43] C. Y. Chan, “Robust Discrete-Time Sliding Mode Controller,” Systems & Letters, vol. 23, pp. 371- 374, 1994.
|