跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:閻正武
研究生(外文):Cheng-Wu Yen
論文名稱:數位重新設計與強健穩定:線性矩陣不等式法
論文名稱(外文):Digital Redesign and Robust Stabilization : an LMI Approach
指導教授:蔡清池
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:87
中文關鍵詞:數位重新設計線性矩陣不等式漸近穩定順滑模態控制
外文關鍵詞:Digital redesignlinear matrix inequalitiesasymptotical stabilitysliding mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自然界,大部分的系統都是用連續時間系統的狀態方程式來描述。由於在數位技術及微電子學方面的快速進步,使得原本以類比設計的控制方法可以用數位控制器去實現,並且得到吾人所希望的提高可靠度、降低設計成本、更具設計上的彈性以及高性能的控制法則的設計目標。許多有關數位控制器的設計方法發表在文獻上,無論如何,保證控制系統的穩定度才是最重要的課題。
本文提出以線性矩陣不等式(linear matrix inequalities, LMIs)及李亞波諾夫穩定準則(Lyapunov stability criterion)為基礎,針對線性非時變離散時間系統而提出一些有關穩定度分析及控制法則的設計方法,所設計的數位系統,在設計程序中即已將穩定度考慮進去,並且予以有效的檢查。吾人考慮三個數位設計的問題,包括數位重新設計、狀態回授及基於觀測器的數位強健穩定控制與數位順滑模態控制器的設計,吾人將所有穩定的充份條件利用Schur complement轉換成線性矩陣不等式的表示方式,並且以套裝軟體的工具箱予以有效的求解。最後,吾人以數值範例來說明所提設計方法確屬有效。
Most physical control systems are described by continuous-time state equations for which many well-established analog control design methods are available. With the rapid and revolutionary advances in digital technology and microelectronics, it has made possible to implement such analog controllers using a digital controller for the sake of better reliability, more flexibility, low cost and high-performance control. There are many digital controller design methods reported in the literature. However, to guarantee the stabilizability of the control systems is the most important issue.
This thesis presents some stability analyses and controller design method for a class of linear uncertain discrete-time systems based on linear matrix inequalities (LMIs) techniques and Lyapunov stability criterion. With the developed LMI-based stability condition, the stability of the designed digital systems is effectively checked during the design procedure. Digital redesign approach, state feedback observer-based robust stabilization control and sliding mode control cases are considered; some sufficient stability and stabilization conditions are represented in terms of LMIs, which can be solved efficiently by using existing LMI software packages. Finally, numerical examples are given to illustrate the effectiveness of the proposed design methods.
Chinese Abstract i
English Abstract ii
Contents iii
List of Tables v
List of Figures vi
Chapter 1 Introduction
1.1 Introduction 1
1.2 Literature Review 3
1.3 Motivations and Objectives 7
1.4 Mathematical Preliminaries 8
1.4.1 Definition of Linear Matrix Inequalities 8
1.4.2 Schur’s Complement 9
1.4.3 S-procedure 10
1.4.4 Congruence Transformation 11
1.4.5 Generalized eigenvalue problems 11
1.5 Contributions of the Thesis 12
1.6 Thesis Organization 13

Chapter 2 Digital redesign using LMI techniques
2.1 Introduction 14
2.2 Problem Statement 18
2.3 Main Results 21
2.4 Numerical Verifications 26
2.5 Concluding Remarks 34

Chapter 3 State feedback and observer-based robust
stabilization Design using LMI
3.1 Introduction 35
3.2 State Feedback Design Using LMI 36
3.3 Observer-Based Robust Stabilization Design Using LMI 42
3.4 Simulation Results 51
3.5 Concluding Remarks 59

Chapter 4 LMI –based sliding mode controller design
method
4.1 Introduction 60
4.2 Nominal Discrete-Time System Sliding Mode Controller
Design 61
4.3 Discrete-Time System with State Uncertainty and
Matched Disturbance Sliding Mode Controller Design 66
4.4 Discrete-Time System With State Uncertainty and
Mismatched Disturbance Sliding Mode Controller
Design 73
4.5 Numerical example 75
4.6 Concluding Remarks 80

Chapter 5 Conclusions and future work
5.1 Conclusions 81
5.2 Future Work 82

References 84
[1] B. C. Kuo, “Digital Control Systems,” 2nd edition,
1992.
[8] J. Ackermann, “Robust control systems with uncertain
physical parameters,” Springer-Verlag, 1993.
[20] K. J. Astrom, and B. Wittenmark., “Computer
controlled systems,” (Prentice-Hall, 1984).
[24] W. M. Wonham, “Linear Multivariable Control : A
Geometric Approach,” New York : Springer-Verlag,1974.
[32] Emelyanov, S. V. : Variable structure control
systems, Nauka, Moscow, 1967.
[35] V. I. Utkin, “Sliding Mode and Their Applications in
Variable Structure Systems,” Moscow : MIR, 1987.
[44] Stephen Boyd, Laurent El Ghaoui, Eric Feron and
Venkataramanan Balakrishnan, “Linear Matrix
Inequalities in System and Control Theory,”
Philadelphia, 1994.
[2] Chang-Hua Lien, “Robust observer-based control of
systems with state perturbations via LMI approach,”
IEEE Trans. Automat. Contr., vol. 49, no. 8, AUGUST
2004.
[3] Z. Ji, L, Wang, G. Xie and F. Hao, “Linear matrix
inequality approach to quadratic stabilization of
switched systems,” IEE Proc.-Control Appl., vol. 151,
no. 3, MAY 2004.
[4] Han Ho Choi, “LMI-based sliding surface design for
integral sliding mode control of mismatched uncertain
systems,” IEEE Trans. Automatic. Contr., vol. 52, no.
4, APRIL 2007.
[5] W. Chang, J. B. Park, H. J. Lee, and Y. H. Joo, “LMI
approach to digital redesign of linear time-invariant
systems,” Proc. IEE, Contr. Theory Appl,. vol. 149,
no. 4, pp. 297-302, 2002.
[6] A. Fujimori, “Optimization of static output feedback
using substitutive LMI formulation,” IEEE Trans.
Automat. Contr., vol. 49, no. 6, pp. 995-997, Jun.2004.
[7] A. H. D. Markazi and N. Hori, “A new method with
guaranteed stability for discretization of continuous-
time control systems,” in Proc. Amer. Control Conf.,
Chicago, IL, pp. 1397-1402, 1992.
[9] M. Chilali and P. Gahinet, “ Design with Pole
Placement Constraints : an LMI Approach,” Proc. 33rd
Conf. Decision and Control, pp. 553-558, Lake Buena
Vista, Florida, 1994.
[10] A. Trofino, “Parameter dependent Lyapunov functions
for a class of uncertain linear systems : An LMI
approach,” in Proc. 38th IEEE Conf. Decision and
Control, Phoenix, AZ, pp. 2341-2346, 1999.
[11] D. Ramos and P. Peres, “An LMI condition for the
robust stability of uncertain continuous-time linear
systems,” IEEE Trans. Autom. Control, vol. 47, no.
4, pp. 675-678, Apr. 2002.
[12] L. S. Shieh, J. L. Zhang, and J. W. Sunkel, “A new
approach to the digital redesign of continuous-time
controllers,” Control Theory Adv. Technol., vol. 8,
no. 1, pp. 37-57, 1992.
[13] L. S. Shieh, Y. J. Wang, and J. W. Sunkel, “Hybrid
state-space self-tuning control of uncertain linear
systems”, Proc. Inst. Elect. Eng. D., vol. 140, no.
3, pp. 99-110, 1993.
[14] L. S. Shieh, X. Zou, and N. P. Coleman, “Digital
interval model conversion and simulation of
continuous-time uncertain systems," Proc. Inst.
Elect. Eng.-Control Theory Appl., vol. 142, pp. 315-
322, 1995.
[15] L. S. Shieh, W. M. Wang, and J. W. Sunkel(1996),
“Digital redesign of cascaded analogue controllers
for sampled-data interval systems,” Proc. Inst.
Elect. Eng., vol. 143, no. 11, pp. 489-498, 1996.
[16] L. E. Sheen, J. S. H. Tsai, and L. S. Shieh,
“Optimal digital redesign of continuous-time systems
with input time delay and/or asynchronous sampling,”
J. Franklin Inst., vol. 335B, no 4, pp. 605-616, 1996.
[17] C. C. Hsu, K. M. Tse, and C. H. Wang, “Digital
redesign of continuous systems with improved
suitability using genetic algorithms-Electronics
letters,” Electron . Lett., vol. 33, pp. 1345-1347,
1997.
[18] N. Rafee, T. Chen, and O. P. Malik, “A technique for
optimal digital redesign of analog controllers,”
IEEE Trans. Control Syst. Technol., vol. 5, pp. 89-
99, 1997.
[19] B. C. Kuo, “Digital control systems,” New York:
Holt, Rinehart and Winston, pp. 321-338, 1980.
[21] L. S. Shieh, J. L. Zhang and S. Ganesan., “Pseudo-
continuous-time quadratic regulators with pole
placement in a specific region,” IEE Proc. D, 137,
(5), pp. 297-301, 1990.
[22] J. S. H. Tsai., L. S. Shieh, and J. L. Zhang., “An
improvement of the digital redesign method based on
the block-pulse function approximation,” Circuits
Syst. Signal Process., 12, (1), PP. 37-49, 1993.
[23] D. Luenberger, “Observers for multivariable
systems,” IEEE Trans. Control, vol 11, pp. 190-197,
1966.
[25] D. C. Youla, J. J. Bongiorno, Jr., and C. N. Lu,
“Single-loop feedback stabilization of linear
multivariable dynamical plants,” Automatica, vol.
10, pp. 159-173, 1974.
[26] A. B. Chammas and C. T. Leondes, “On the design of
linear time-invariant systems by periodic output
feedback : Part 1. Discrete-time pole assignment,”
Int. J. Contr., vol. 27, pp. 885-894, 1978.
[27] A. B. Chammas and C. T. Leondes, “On the finite time
control of linear systems by piecewise constant
output feedback,” Int. J. Contr., vol. 30, pp. 227- 234, 1979.
[28] J. P. Greschak and G. C. Verghese, “Periodically
varying compensation of time-invariant systems,”
Syst. Contr. Lett., vol. 2, pp. 88-93, 1982.
[29] P. P. Khargonekar, K. Poolla, and A. Tannenbaum,
“Robust control of linear time-invariant plants using
periodic compensation,” IEEE Trans. Automat. Contr.,
vol. AC-30, pp. 1088-1096, 1985.
[30] T. Mita, B. C. Pang, and K.Z. Liu, “Design of
optimal strongly stable digital control systems and
application to output feedback control of mechanical
systems,” Int. J. Contr., vol. 45, pp. 2071-2082,
1987.
[31] V. I. Utkin, “Variable structure systems with
sliding modes,” IEEE Trans. Automat . Contr., vol.
AC-22, pp. 212-222, 1977.
[33] V. I. Utkin, “Variable structure systems : Present
and Futures,” Automatic and Remote Control, vol. 44,
Pt 1, pp. 1105-1119, 1983.
[34] O. M. E. El-Ghezawi, S. A. Billings, and A. S. I.
Zinober, “Variable Structure Systems and Systems
Zeros,” IEE Proc., vol. 130, Pt.D, pp. 1-5, 1983.
[36] B. S. Heck, “Sliding-mode Control for Singularly
Peturbed Systems,” Int. J. Control, vol. 53, No. 4,
pp.985-1001, 1991.
[37] B. M. Diong, and J. V. Medanic, “Dynamic Output
Feedback Variable Structure Control for System
Stabilization,” Int. J. Control, vol. 56, No. 3, pp.
607-630, 1992.
[38] V. I. Utkin, “Application Oriented Trends in Sliding
Mode Control Theory,” Proc. of IEEE IECON’93, Maui,
HW, USA., pp. 1937-1942, 1993.
[39] K. Furuta, “Sliding-Mode Control of a Discrete
System,” Systems & Letters, vol. 14, pp. 145-152,
1990.
[40] C. Y. Chan, “Servo-Systems with Discrete-Variable
Structure Control,” Systems & Letters, vol. 17, pp.
321-325, 1991.
[41] C. L. Hwang, “Design of Servo Controller via the
Sliding Mode Technique,” IEE Proc., Part D. vol.
139, pp. 439-446, 1992.
[42] S. K. Spurgeon, “Hyperplane Design Techniques for
Discrete-Time Variable Structure Control Systems,”
Int. J. Control, vol. 55, pp. 445-456, 1992.
[43] C. Y. Chan, “Robust Discrete-Time Sliding Mode
Controller,” Systems & Letters, vol. 23, pp. 371-
374, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊