跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳聚柔
研究生(外文):Jiuh-Rou Wu
論文名稱:連續影像之自動人體擷取及姿態分析
論文名稱(外文):Automatic Human Body Extraction and Posture Analysis in Consecutive Images
指導教授:莊家峰
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:81
中文關鍵詞:人體擷取移動物體分割自動門檻值姿態辨識姿態分析
外文關鍵詞:human body extractionmoving object segmentationautomatic thresholdposture recognitionposture analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩種人體姿態的分析方法,其一為使用遞迴式模糊類神經網路做人體姿態辨識,另一為利用輪廓及膚色資訊來做人體姿態估測。在做姿態分析之前,必須從背景中擷取出人體的輪廓。在此提出一個移動物體分割演算法將人體和背景從一連串的影像之中區分出來,並且,對於影像差異及背景差異加入了一個搭配尤拉(Euler)數之自動決定門檻值的方法,最後再經由一系列的影像處理來獲得完整的人體輪廓。姿態辨識方面,我們針對站、彎、坐、躺四種人體主要姿態去做辨識,我們運用輪廓的水平與垂直投影以及離散傅立葉轉換(DFT)來取得投影向量的特徵值,並配合人體輪廓的長寬比值,以這組數值代入遞迴式模糊類神經網路運算進而辨識姿態。在姿態估測上,目的在於估測人體上重要且具象徵性的位置,我們結合膚色及人體周圍輪廓之凸點來判斷人體上頭、手與腳的位置。實驗結果顯示,在此提出的方法可以有效地分辨四種姿態以及標示人體上這些重要的位置。
In this thesis, two kinds of human body posture analysis methods are proposed. One is continuous human body posture recognition by a recurrent fuzzy neural network, and the other is human posture estimation by silhouette and skin color information. Before posture analysis, it is necessary to segment the human body from background. A moving object segmentation algorithm is proposed to distinguish the human body from background from a sequence of images. This algorithm uses an automatic threshold determination method with Euler numbers for frame and background differences. After segmentation, a series of image processing is used obtain a complete silhouette of human body. The objective of posture recognition is to recognize four types of main body postures, including standing, bending, sitting, and lying. The significant Discrete Fourier Transform (DFT) coefficients of horizontal and vertical histograms together with length-width ratio of the silhouette are used as features. Recognizer is designed by a recurrent neural fuzzy network. In posture estimation, our objective is to locate significant body points. We combined skin color information with the convex points of contour of human body to locate head, hands, and feet. Experiment results show that the proposed approach can recognize the four types of postures and locate the significant points of human body with good performance.
Acknowledgements……………………………………………...i
Chinese Abstract…….……………..……………………....…..ii
English Abstract………………………………….…………...iii
Contents………………………………….……………….……iv
List of Figures………………………………………………..vi
List of Tables……………………………………………...........ix

Chapter 1 Introduction……..……………………………….1
1.1 Survey……………………………………………………..1
1.2 Organization of the Thesis………………...………………4

Chapter 2 Human Body Extraction………………………….5
2.1 Overview…………………………………………………..5
2.2 Image Model………………………………………………5
2.3 Moving Object Segmentation Algorithm..………………..7
2.4 Threshold with Euler Numbers…………….…………….18

Chapter 3 Human Body Posture Recognition……………24
3.1 Overview………………………………………………..24
3.2 Feature Extraction….……………………….....………..24
3.3 Local Rule Feedback Neural Fuzzy System….…..…….30
3.4 Training and Recognition by LRFNFS…………………31

Chapter 4 Human Body Posture Estimation……........…..32
4.1 Overview……………….……………………………….32
4.2 Orientation of The Human Body……………………….34
4.3 Convex Points Search…………………………………..37
4.4 Skin Color Detection…………………………………..40
4.5 Locating The Significant Points of Human Body………43

Chapter 5 Experiment………………………………..........50
5.1 Human Body Extraction Experiment…..……………….50
5.2 Human Body Posture Recognition Experiment………..59
5.3 Human Body Posture Estimation Experiment….………69

Chapter 6 Conclusion………………………………...........76

References……………………………………………………78
[1] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on System, Man, and Cybernetics, Part C: Applications and Reviews, vol.34, no.3, pp. 334-352, Aug. 2004.
[2] N. Friedman and S. Russell, “Image segmentation in video sequences : a probabilistic approach,” Proceedings of Annual Conference on Uncertainty in Artificial Intelligence,1997.
[3] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, and S. Russel, “Toward robust automatic traffic scene analysis in real-time,” Proceedings of IAPR International Conference Pattern Recognition, vol. 1, pp. 126-131, 1994.
[4] M. Kohle, D. Merkl, and J. Kastner, “ Clinical gait analysis by neural network : Issues and experiences,” Proceedings of IEEE Symp. Computer-Based Medical system, pp. 138-143, 1997.
[5] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee, “Using adaptive tracking to classify and monitor activities in a site,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 22-31, 1998.
[6] H. Z. Sun, T. Feng, and T. N. Tan, “Robust extraction of moving objects from image sequences,” Proceedings of the Fourth Asian Conference on Computer Vision, Taiwan, pp. 961-964, 2000.
[7] J. Stauder, R. Mech, and J. Ostermann, “Detection of moving cast shadow for object segmentation,” IEEE Transactions Multimedia, vol. 1, pp. 65-76, Mar. 1999.
[8] S. McKena, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Tracking group of people,” Computer Vison and Image Understanding, vol. 80, pp. 42-56, 2000.
[9] A. Lipton, H. Fujiyoshi, and R. Patil, “Moving target classification and tracking from real-time video,” Proceedings of IEEE Workshop Applications of computer Vision, pp. 8-14, Oct. 1998.
[10] D. Meyer, J. Denzler, and H. Niemann, “Model based extraction of articulated objects in image sequences for gait analysis,” Proceedings of IEEE International Conference on Image, pp. 78-81, 1988.
[11] J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow Techniques,” Proceedings of IEEE International Conference of Computer Vision, vol. 12, no. 1, pp. 42-77, Feb. 1994.
[12]D. Meyer, J. Psl, and H. Niemann, “Gait classification with HMM’s for trajectories of body parts extracted by mixture densities,” Proceedings of British Machine Vision Conference, pp. 459-468, 1998.
[13] S. Y. Chien, S. Y. Ma, and L. G. Chen, “Efficient Moving Object segmentation algorithm using background registration technique,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 7, pp. 577-586, July 2002.
[14] L. Snidaro and G.L. Foresti, “Real-time thresholding with Euler numbers,” Pattern Recognition Letters, vol.24, no.9-10, pp. 1533-1544, Jun. 2003.
[15] H. L. Tzou, “Real-Time Human Detection and Tracking,” Master Thesis, Tatung
University, 2002.
[16] P. N. Cheng, “The Application of Fuzzy Inference to Automatic Detect and Identification of Intruders in Security System,” Master Thesis, Tatung University, 2003.
[17] A. F. Bobick and A. D. Wilson, “A state-based technique to the representation and recognition of gesture,” IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 19, pp. 1325-1337, Dec. 1997.
[18] T. Starmer, J. Weaver, and A. Pentland, “Real-time American sign language recognition using desk and wearable computer-based video,” IEEE Transactions Pattern Analysis Machine Intelligence, vol. 20, pp. 1317-1375, Dec. 1998.
[19] N. Johnson and D. Hogg, “Learning the distribution of object trajectories for event recognition,” Image Vision Computer, vol. 14, no. 8, pp. 609-615, 1996.
[20] H. Fujiyoshi and A. J. Lipton, “Real-time human motion analysis by image skeletonization,” Proceedings of IEEE Workshop on Applications of Computer Vision , pp. 15-21, Oct. 1998.
[21] I. Haritaoglu, D. Harwood and L. S. Davis, “W4 real-time surveillance of people and their activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, Aug. 2000.
[22]Y. Li, M. Songde, and L. Hanqing, “A multiscale morphological method for human posture recognition,” Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 56-61, Apr. 1998.
[23] P. Spagnolo, M. Leo, A. Leone, G. Attolico, and A.Distante, “Posture estimation in visual surveillance of archaeological sites,” Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 277-283, July 2003.
[24] S. Iwasawa, K. Ebihara, J. Ohya, and S. Morishima, “Real-time estimation of human body posture from monocular thermal images,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 15-20, 1997.
[25] K. Takahashi and T. Tanigawa, “Remarks on real-time human posture estimation from silhouette image using neural network,” Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 370-375, Oct. 2004.
[26] D. W. Kang and O. Jun, “Estimating postures of a human wearing a multiple-colored suit based on color information processing,” Proceedings of IEEE International Conference on Multimedia and Expo, vol. 2, pp. 261-264, 2003.
[27] O. Jun, “Analysis of human behaviors by computer vision based approaches,” Proceedings of IEEE International Conference on Multimedia and Expo, vol. 1, pp. 913-916, Aug. 2002.
[28] D. Kang and O. Jun, “Postures of a human wearing a multiple-colored suit based on color information processing,” Proceedings of IEEE International Conference on Multimedia and Expo, vol. 1, pp. 261-264, July 2003.
[29] C. Y. Choo and H. Freeman, “An efficient technique for compressing chain-coded line drawing images,” Proceedings of Record Asilomar Conference Signal on Systems and Computers, vol. 2, pp. 717-720, Oct, 1992.
[30] H. Kim and K. Nam, “Object recognition of one-dof tools by a back-propagation neural net,” IEEE Transactions on Neural Networks, vol. 6, no. 2, pp. 484-487, Mar. 1995.
[31] S. Osowski and D. D. Nghia, “Neural networks for classification of 2-D Patterns,” Proceedings of International Conference on Signal Processing, vol. 3, pp. 1568-1571, Aug. 2000.
[32] R. Mech and M. Wollborn, “A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera,” Signal Processing, vol. 66, pp. 203-217, Apr. 1998.
[33] L. T. Chen, “Moving Object Recognition By Contour-Based Neural Fuzzy Network,” Master Thesis, National Chung-Hsing University, 2004.
[34] D. Chai and K. N. Ngan, “Face segmentation using skin color map in videophone applications,” IEEE Transactions CSVT, vol. 9, no. 4, pp. 551-564, Jun. 1999.
[35] P. L. Rosin, “Thresholding for change detection,” Computer Vision Image Understanding, vol. 86, no. 2, pp. 79-95, 2002.
[36] S. B. Gray, “Local properties of binary images in two dimensions,” IEEE Transactions Computers, pp. 551-561, 1971.
[37] C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy inference network and its applications,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 1, pp. 12-32, Feb. 1998.
[38] N. Bojic and K. K. Pang, “Adaptive skin segmentation for head and shoulder video sequence,” SPIE Visual Communication Image Processing, vol. 4067, pp. 704-711, Jun. 2000.
[39] K. Sobottka and I. Pitas, “A novel method for automatic face segmentation, facial feature extraction and tracking,” Signal Processing: Image Communication, vol. 12, pp. 263-281, Jun. 1998.
[40] M. T. Razali and B. J. Adznan, “Detection and classification of moving object for smart vision sensor,” IEEE Department of Computer and Communication Engineering, vol. 1, pp. 733-737, Apr. 2006.
[41] J. Ohya, A. Utsumi, and J. Yamato, Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation, and Behavior Recognition, Chap. 3, Kluwer Academic Publishers, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top