跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳孟傑
研究生(外文):Meng-Chieh Chen
論文名稱:使用最大-最小螞蟻系統於高運量捷運省能之閉塞區間設計
論文名稱(外文):Block-Layout Design Using MAX-MIN Ant System for Saving Energy on Mass Rapid Transit System
指導教授:林俊良林俊良引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:47
中文關鍵詞:捷運系統固定閉塞區間號誌系統耗能最大-最小螞蟻系統
外文關鍵詞:rapid transit systemfixed-block signaling systemenergy consumptionMax-Min Ant System
相關次數:
  • 被引用被引用:2
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出基於固定閉塞區間號誌系統架構與等閉塞區間理論,在考量相鄰站間省能問題下,設計高運量捷運系統閉塞區間的佈設位置。相鄰站間影響列車運轉耗能的主要因素為坡度及列車運行速度軌跡,在設計固定閉塞區間號誌佈設及速度碼時,仍需考量旅程平均速度及班距,以達高運量捷運系統基本服務需求。
論文中,首先將相鄰站間列車運行耗能問題表示成組合最佳化問題,並於旅程平均速度及班距限制下,以蟻群演算法中的最大-最小螞蟻系統做為高運量捷運系統相鄰站間省能速度軌跡最佳化的方法。待速度軌跡決定後,根據等閉塞區間理論中速度碼間最短距離設計閉塞區間號誌佈設位置。最後經由模擬的結果證實此方法的可行性及效能。
This thesis presents a method of block-layout design between successive stations for saving energy under the framework of the fixed-block signaling system and the equi-block principle on mass rapid transit systems. The main factors that affect the energy consumption of train operation in the journey are the alignment gradient and train-speed trajectory. At the same time, the block-layout and speed code need to be determined under the restrictions of average speed and headway for service quality.
First, the problem of minimizing energy consumption between successive stations is represented to the combinatorial optimization problem in this thesis. Second, the train-speed trajectory for saving energy is optimized by the max-min ant system of ant colony optimization algorithms. Third, the block-layout is designed in accordance with the shortest block length under the equi-block principle. Finally, the feasibility and benefit are verified via simulations, analyses and discussions.
誌謝辭 i
中文摘要 ii
Abstract iii
Contents iv
List of Figrues vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Fixed-Block Signaling Systems of RTS 3
2.1 Fundamentals of Signaling Systems 3
2.2 Automatic Train Control System- The Example of Taipei Rapid Transit Systems 3
2.3 Principles of Fixed-Block Signaling System 6
Chapter 3 Ant Colony Optimization Algorithm 9
3.1. Foraging Behavior of Ant Colonies and Optimization Process 9
3.2. Ant System 10
3.3. MAX-MIN Ant System 12
Chapter 4 Block-Layout Design of Fixed-Block Signaling System for Saving Energy 15
4.1 Presentation of Calculation Formulas 15
4.2 Optimization of Train-Speed Trajectory Using MAX-MIN Ant System 17
4.3 Block-Layout Design after Optimizing the Train-Speed Trajectory 22
Chapter 5 Simulation Results 23
5.1 Comparison of Results with Different Values of τmax 23
5.2 Comparison of Results with Different Values of λ 24
5.3 Comparison of Results with Different Values of ρ 25
5.4 Comparison of Results with Different Number of Sections 25
5.5 Comparison of Results between MMAS and GA with DP 25
Chapter 6 Conclusions 27
References 28
Fig. 1 Framework of ATC system 31
Fig. 2 Relationship between the free and occupied blocks 32
Fig. 3 Relationship between the speed codes of ATO and ATP systems under a 6-aspect equi-block system 33
Fig. 4 How ants exploit the pheromone to find the shorter path between two branches 33
Fig. 5 Flowchart of block-layout design for saving energy 34
Fig. 6 Decomposition of train weight on the uphill. 34
Fig. 7 Flowchart for finding out the optimal train-speed trajectory for saving energy 35
Fig. 8 Example of selection mechanism under 5-aspect system 36
Fig. 9 Convergence of different τmax 37
Fig. 10 Convergence of different λ 37
Fig. 11 Convergence of different ρ 38
Fig. 12 Convergence of different number of sections 38
Fig. 13 Result of the 4-aspect system by the MMAS 39
Fig. 14 Result of the 5-aspect system by the MMAS 40
Fig. 15 Result of the 6-aspect system by the MMAS 41
Fig. 16 Result of the 7-aspect system by the MMAS 42
Fig. 17 Result of the 6-aspect system by the GA with DP 43

Table 1 Braking distances and the set of speed codes under different aspects 44
Table 2 Results of different τmax 44
Table 3 Results of different λ 45
Table 4 Results of different ρ 45
Table 5 Results of different number of sections 46
Table 6 Results of different aspects by the MMAS 46
Table 7 Result of comparison between MMAS and GA with DP 47
[1]H.H. Hoang et al, “Reducing Energy Consumption through Trajectory Optimization for a Metro Network,” IEEE Transactions on Automatic Control, Vol. 20, No. 5, pp. 590-595, October 1975.
[2]B. Szabados and U. Schaible, “Peak Power Bi-directional Transfer from High Speed Flywheel to Electrical Regulated Bus Voltage System: A Practical Proposal for Vehicular Technology,” IEEE Transactions on Energy Conversion, Vol. 13, No. 1, pp. 34-41, March 1998.
[3]S.P. Gordon and D.G. Lehrer, “Coordinated Train Control and Energy Management Control Strategies,” Proceedings of the 1998 ASME/IEEE Joint Railroad Conference, pp. 165-176, April 1998.
[4]L.A.M.V. Dongen and J.H. Schuit, “Energy-Efficient Driving Patterns in Electric Railway Traction,” International Conference on Main Line Railway Electrification, pp. 154-158, September 1989.
[5]S.N. Talukdar and R.L. Koo, “Multiobjective Trajectory Optimization for Electric Train,” IEEE Transactions on Automatic Control, Vol. 24, No. 6, pp. 888-893, December 1979.
[6]C.S. Chang and S.S. Sim, “Optimisaing Train Movements through Coast Control Using Genetic Algorithms,” IEE Proceedings- Electric Power Applications, Vol. 144, No. 1, January 1997.
[7]H.S. Hwang, “Control Strategy for Optimal Compromise between Trip Time and Energy Consumption in a High-Speed Railway,” IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, Vol. 28, No. 6, pp. 791-802, November 1998.
[8]C.S. Chang et al., “Pareto-Optimal Set Based Multiobjective Tuning of Fuzzy Automatic Train Operation for Mass Transit System,” IEE Proceedings- Electric Power Applications, Vol. 146, No. 5, pp.577-583, September 1999.
[9]E. Khmelnitsky, “On an Optimal Control Problem of Train Operation,” IEEE Transactions on Automatic Control, Vol. 45, No. 7, pp. 1257-1266, July 2000.
[10]K.K. Wong and T.K. Ho, “Coast Control for Mass Rapid Transit Railways with Searching Methods,” IEE Proceedings- Electric Power Applications, Vol. 151, No. 3, pp. 365-376, May 2004.
[11]D.C. Gill and C.J. Goodman, “Computer-based Optimisation Techniques for Mass Transit Railway Signalling Design,” IEE Proceedings-B, Vol. 139, No. 3, pp. 261-275, May 1992.
[12]C.S. Chang and D. Du, “Improved Optimisation Method Using Genetic Algorithms for Mass Transit Signalling Block-Layout Design,” IEE Proceedings- Electric Power Applications, Vol. 145, No. 3, pp. 266-272, May 1998.
[13]C.S. Chang and D. Du, “Further improvement of Optimisation Method for Mass Transit Signalling Block-Layout Design Using Differential Evolution,” IEE Proceedings- Electric Power Applications, Vol. 146, No. 5, pp. 559-569, September 1999.
[14]B.R. Ke and N. Chen, “Signalling Block-Layout and Strategy of Train Operation for Saving Energy in Mass Rapid Transit Systems,” IEE Proceedings- Electric Power Applications, Vol. 152, No. 2, pp. 129-140, April 2005.
[15]M. Dorigo and L.M. Gambardella, “Ant Colony System: A Cooperative Leaning Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66, April 1997.
[16]V. Maniezzo and A. Colorni, “The Ant System Applied to the Quadratic Assignment Problem,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 5, pp. 769-778, October 1999.
[17]D. Merkle, M. Middendorf and H. Schmeck, “Ant Colony Optimization for Resource-Constrained Project Scheduling,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 4, pp. 333-346, August 2002.
[18]M. Dorigo, M. Birattari and T. Stutzle, “Ant Colony Optimization,” IEEE Computation Intelligence Magazine, Vol. 1, No. 4, pp. 28-39, November 2006.
[19]M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, Vol. 26, No. 1, pp. 29-41, February 1996.
[20]T. Stutzle and H. Hoos, “Max-Min Ant System and Local Search for the Traveling Salesman Problem,” Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pp. 309-314, 1997.
[21]W.J. Davis, “The Tractive Resistance of Electric Locomotive and Cars,” General Electric Review, Vol. XXIX, No. 10, pp. 685-707, October 1926.
[22]M. Dorigo and G.D. Caro, “Ant Colony Optimization: A New Meta-Heuristic,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 2, pp. 1470-1477, July 1999.
[23]M. Dorigo and T. Stutzle, “Ant Colony Optimization”, MIT press, Massachusetts, 2004.
[24]O.S. Nock et al., “Railway Signalling: A Treatiose on the Recent Practice of British Railways,” A & C Black Limited, UK, 1980.
[25]O.E. Teague et al., “Automatic Train Control in Rail Rapid Transit,” United States Congress, Office of Technology Assessment, NTIS order #PB-254738, May 1976.
[26]B.R. Ke, “Signaling System for Saving Energy on Mass Rapid Transit Systems,” Ph.D. Dissertation, National Taiwan University of Science and Technology, Taiwan, ROC., 2006.
[27]翁聿復,「高運量捷運系統電聯車號誌設備功能與操作概論」,捷運技術,第十三期,民國八十四年三月二十三日。
[28]鄧淇,「行車控制中心簡介」,捷運電聯車號誌系統研習班講義,車輛工業人才培訓計畫,經濟部工業局,民國八十三年十月五日至七日。
[29]段英明,「捷運號誌系統概論」,捷運電聯車號誌系統研習班講義,車輛工業人才培訓計畫,經濟部工業局,民國八十三年十月五日至七日。
[30]陳鼎漢,「閉塞號誌設計理念」,捷運技術,第五期,民國八十年八月二十三日。
[31]曾乙申,「台北捷運工程淡水─新店線供電系統之負載潮流與諧波分析」,國立台灣工業技術學院電機研究所博士論文,民國八十四年七月。
[32]陳智淵,「台北捷運系統列車運行動態模擬」,國立台灣科技大學碩士論文,民國九十一年五月。
[33]許臨國,「列車行駛之阻力探討」,捷運技術,第五期,民國八十年八月二十三日。
[34]曾乙申,「列車運行模擬」,課程講義,民國91年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top