跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐承佑
研究生(外文):Cheng-You HSU
論文名稱:機器人沿牆走行為模式之模糊控制設計器設計
論文名稱(外文):Design of a Fuzzy Controller for the Wall Following Behavior of a Robot
指導教授:陶金旭
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:114
中文關鍵詞:模糊控制類神經網路機器人架構沿牆走行為模式
外文關鍵詞:Fuzzy ControlNeuro-NetworkRobot StructureWall-Following Behavior
相關次數:
  • 被引用被引用:1
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文之主旨在設計機器人以沿牆走行為模式之模糊控制系統,在未知環境下執行機器人沿牆走行為模式,並使機器人能依照各種環境變化來以各種相關的行為模式替換,例如:閃避障礙物、轉彎規劃、牆搜尋。行為架構為基礎的機器人能夠在環境平面繞牆行走。

本論文除了利用模糊控制器外,更提出了改善的方法,加入類神經網路的觀念,以倒傳遞演算法設計出可適應性的模糊控制器,以感測器收集周圍環境參數的資訊,依照這資訊來計算機器人的控制變數,並且用迴授的方式以增加錯誤函數藉著倒傳遞演算來增進整體系統的穩定度,並且探討此種適應性模糊控制器的各種變化。

最後,經由電腦模擬與實際導航操作,驗證本論文的設計具有更加改善的穩定效果。
The aim of this thesis is to design a fuzzy controller for a robot system, which is capable of executing the wall-following behavior and the adaptation under varying conditions, such as obstacle avoidance, making turns, and wall-searching. With these capabilities, the proposed robot is competent to walk along the walls in any environment. Furthermore, with the concept of neural network, an adaptive fuzzy controller is designed based on the back-propagation algorithm. Using the information obtained from the infrared sensor, the control output is computed. To improve the performance of the system, the error of the system is utilized to modify the parameters of the adaptive fuzzy controller according to the gradient descent updating rule. Through the simulation and experiments, the proposed robot system has been proved to be reliable and effective.

Through the simulation and experiments, the robot system proposed has been proved to be reliable and effective.
目錄 iii
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 相關研究回顧 2
1.4 研究方向與問題描述 6
1.5 章節說明 7
第二章 機器人之系統與硬體介紹 9
2.1 實驗機器人 9
2.1.1 機器人結構系統 9
2.1.2 實驗器材和設備 11
2.1.3 機器人之基本構造 11
2.2 機器人硬體模組 11
2.2.1 PMS5005 Sensor and Motion Controller 12
2.2.2 PMB5010 Multimedia Controller 13
2.3 機器人感測器模組 13
2.3.1 DUR5200 超音波感測器 15
2.3.2 GP2Y0A21YK紅外線感測器 16
2.4 機器人通訊與多媒體 20
2.5 機器人控制平台 24
2.5.1 機器人電池能量 26
2.5.2 機器人聲音播放與影像擷取 26
2.6 機器人控制流程 26
第三章 機器人之自我行為模式控制器 28
3.1 機器人感測器存取 28
3.2 模糊控制器設計之應用於機器人沿牆行走 29
3.3 模糊控制器設計之應用於機器人閃避障礙物 38
3.4 機器人轉彎狀態機制 44
3.5 機器人選擇左右牆機制 46
3.6 機器人行為模式融合 48
第四章 適應性學習應用於沿牆行走 50
4.1 模糊化類神經網路 50
4.2 結合適應性之機器人控制器設計 51
4.2.1 倒傳遞演算法 52
4.2.2 應用倒傳遞學習機制於沿牆走行為模式 53
4.3 適應性沿牆走行為控制器 59
4.3.1 適應性的再訓練 60
第五章 實驗與模擬結果 61
5.1 車體運動方程式 61
5.2 車體初始定位 64
5.3 實驗結果 68
5.3.1 穩態響應 68
5.3.2 角度與距離輸出值 69
5.4 模擬結果 81
5.4.1 車行模擬圖 82
5.4.2 模擬角度與距離輸出值 90
5.4.3 重複訓練函數 101
5.4.4 調整Gradient係數 103
5.5 GUI模擬器介面設計 106
第六章 結論與未來展望 108
6.1 實驗結論 108
6.2 未來展望 109
[1]蘇木春, 張孝德, “機器學習-類神經網路、模糊系統以及基因演算法則,” 全華科技圖書股份有限公司, Jul. 2001

[2]R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robotics and Automation, vol. 2, no. 7, pp. 14-23, 1986.

[3]P. Rusu, E. M. Petriu, T. E. Whalen, A. Cornell, and H. J. W. Spoelder, “Behavior-based neuro-fuzzy controller for mobile Robot Navigation,” IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 4, pp. 1335-1340, Aug. 2003

[4]S. Thongchai, S. Suksakulchai, D. M. Wilkes, and N. Sarkar, “Sonar behavior-based fuzzy control for a mobile robot,” IEEE International Conference on System, Man, and Cybernetics, vol. 5, pp. 3532-3537, Oct. 2000

[5]T. Yata, L. Kleeman, S. Yuta, “Wall following using angle information measured by a single ultrasonic transducer,” IEEE International Conference on Robotics and Automation, vol. 2, pp. 1590-1596, May 1998

[6] S. Fazli and L. Kleeman, “Wall following and Obstacle avoidance results from a multi-DSP sonar ring on mobile robot,” IEEE International Conference on Mechatronics and Automation, vol. 1, pp. 432-437, Jul. 2005

[7] P. Van Turennout, G. Honderd, L. J. Van Schelven, “Wall following control of a mobile robot,” IEEE International Conference on Robotics and Automation, vol. 1, pp. 280-285, May 1992

[8]K. Izumi, K. Watanabe, S.-H. Jin, “Obstacle avoidance of mobile robot using fuzzy behavior-based control with module learning,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 454-459, Oct. 1999

[9] J. E. Meng and D. Chang, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Transaction on Industrial Electronics, vol. 52, no. 3, pp. 898-905, Jun. 2005

[10] T.-H. S. Li, Shih-Jie Chang, and Wei Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 491-501, Aug. 2004

[11] E. Zalama, J. Gomez, M. Paul, and J. R. Peran. “Adaptive behavior navigation of a mobile robot,” IEEE Transactions on Systems, Man ,and Cybernetics-PART A: Systems and Humans, vol. 32, no. 1, pp. 160-169, Jan. 2002

[12] J. Yen, R. Langari, “Fuzzy logic intelligence, control, and information,” Prentice Hall, 1999

[13] K.-T. Song, Y.-S. Lin, “Landmark-based guidance of an autonomous vehicle using fuzzy logic velocity control and real-time computer vision,” Journal of the Chinese Fuzzy Systems Association, vol. 5, no. 1, pp. 43-51, 1999

[14]C. C. Wong, H. Y. Wang, S. A. Li, and C. T. Cheng, “Fuzzy controller designed by GA for two-wheeled mobile robots,” IEEE International Journal of Fuzzy Systems, vol. x, no. y, 2004

[15]C. Ye, N. H. C. Yung, and D. Wang, “A fuzzy Controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance,” IEEE Transactions on Systems, Man ,and Cyberetics-PART B:Cybernetics, vol. 33, no. 1, pp. 17-27, Feb. 2003

[16] H. R. Beom and H. S. Cho, “A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning,” IEEE Transactions on Systems ,Man ,and Cybernetics, vol. 25, no. 3, pp. 464-477, March 1995

[17] N. Rahman, A. R. Jafri, “Two layered behaviour based navigation of mobile robot in an unstructured environment using fuzzy logic,” IEEE International Conference on Emerging Technologies , pp. 230-235, Sep. 2005

[18] Y. Fu, H. Xu, S. Wang, J. Liu, H. Xu, and H. Li, “Mobile robot control based on fuzzy behavior and robot safety body in unknown environment,” IEEE International Symposium on Conputaional Intelligence in Robotics and Automation , pp. 547-552, Jun. 2005

[19]X. Xue, S. X. Yang, and M. Q.-H. Meng, “Remote Sensing and Teleoperation of a mobile robot via the internet,” IEEE Interational Conference on Information Acquisition , pp. 6, Jun. 2005

[20]K. C. Ng and M. M. Trivedi, “A neuron-fuzzy controller for mobile robot navigation and multirobot convoying”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 28, no 6, pp. 829-840 , Dec. 1998

[21]C. Barret, M. Benreguieg, H. Maaref, “Fuzzy agents for reactive navigation of a mobile robot,” IEEE First International Conference on Knowledge-Based Intelligents Electronic Systems, vol 2, pp. 546-548, May 1997

[22]K.-T. Song and J. Y. Lin, “Behavior fusion of robot navigation using a fuzzy neural network,” IEEE Intermational Cnference on System, Man, and Cybernetics, Oct. 8-11, 2006

[23]S. X. Yang, Hao Li and M. Meng. “Fuzzy control of a behavior-based mobile robot,” The 12th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 319-324 , May 2003

[24] WiRobot X80 User Manual, Dr. Robot

[25] F.-J. Lin, C.-H. Lin, and P.-H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 751-759, Oct. 2001

[26] J. S. Taur, G. H. Lee, C. W. Tao, “A two-stage design of adaptive fuzzy controllers for time-delay systems with unknown models,” IEEE 2003

[27] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, no. 3, pp. 501-510, May 2006
[28] S.-T. Li, Y.-C. Li, “Neuro fuzzy behavior-based control of a mobile robot in unknown environments,” Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol 2, pp. 806-811, Aug. 2004

[29] F. M. Raimondi, M. Melluso, L. S. Ciamcimino, “A new kinematic and dynamic direct adaptive fuzzy control of constrained mobile wheeled vehicles,” IEEE Conference on Emerging Technologies and Factory Automation, vol. 2, pp. 8, Sept. 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊