跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高斌城
研究生(外文):Bin-Chen Gao
論文名稱:含有假期,啟動時間及會故障的服務者在<p,N>-方策M/G/1排隊系統之最佳控制
論文名稱(外文):Optimal control of the < p,N >-policy M/G/1 queue with server vacations, startup and breakdowns
指導教授:王國雄王國雄引用關係
指導教授(外文):Kuo-Hsiung Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:31
中文關鍵詞:< pN >-方策有假期的服務者啟動時間聯合最佳的開端值花費函數.
外文關鍵詞:< pN >-policyserver vacationsa startup timethe joint optimal threshold valuesthe cost function.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文研究處理了含有假期,啟動時間及會故障的服務者在< p,N >-方策M/G/1排隊系統之最佳控制. 顧客的到達假設為一卜瓦松過程. 服務時間, 啟動時間及修理時間假設為一般分配. 當系統是空的時候, 服務者會被關閉並旅遊. 當旅遊返回後, 發現在等候線上的顧客人數少於N人, 它會繼續另一個旅遊. 一旦在系統累積的顧客人數達到N人或更多, 系統開啟服務者的機率為p並且保持關閉服務者的機率為(1-p). 如果服務者立刻被開啟, 它暫時不能服務等待的顧客. 它需要一個啟動時間後才開始服務顧客直到系統中沒有顧客. 我們研究各種系統性能測度和發展每單位時間每位顧客的總期望花費, 其中p and N是決策變數. 我們使用了一個有效率的程序來決定聯合最佳的開端值(p*,N*),使得花費函數有最小值.

關鍵詞: < p,N >-方策, 有假期的服務者, 啟動時間, 聯合最佳的開端值,花費函數.
This thesis deals with the optimal control of the < p,N >-policy M/G/1 queue with server vacations, startup and breakdowns. It is assumed that customers arrive following a Poisson process. Service times, startup times and repair times obey general distribution. The server is turned off and takes a vacation when the system is empty. When the server returns from a vacation and finds the number of customers in the waiting line is less than N, he will go on another vacation. Once N or more customers are accumulated in the system, turn the server on with probability p and leave the server off with probability (1-p). If the server is immediately turned on, it is temporarily unavailable to serve the waiting customers. He needs a startup time before providing service until there are no customers in the system. We develop various system performance measures and the total expected cost per unit time, in which p and N are decision variables. An efficient procedure is used to determine the joint optimal threshold values (p*,N*) , so as to minimize the cost function.

Keywords: < p,N >-policy, server vacations, a startup time, the joint optimal threshold values, the cost function.
Contents

1 Introduction…………………………………1

1.1 Problem Statement…………………………1
1.2 Literature Review………………………………3
1.3 The aim of the thesis…………………………4
1.4 Notations……………………5

2 System Performance Measures…………………………8

2.1 The N-policy M/G/1 queue –system performance measures……8

2.1.1 Expected length of the vacation, startup, breakdown, busy periods and busy cycle…………8

2.1.2 Expected number of customers in the system…………10

2.2 The < p,N >-policy M/G/1 queue –system performance measures.........11

2.2.1 Expected length of the vacation, startup, breakdown, busy periods and busy cycle…………………11

2.2.2 Expected number of customers in the system…………12

2.2.3 Numerical experiments………………………………13

3 Cost Analysis………………………………18

3.1 The long-run fraction of time measures………………18

3.2 Optimal < p,N >-policy ………………………………19

3.2.1 The cost function………………………………19

3.2.2 The joint optimal values of p and N………………20

3.3 Numerical examples………………………………22

4 Conclusions and Future Research………………………26

4.1 Conclusions…………………………………………………26

4.2 Future research…………………………………………26

References…………………………………………28
1. Baker, K. R., A note on operating policies for the queue M/M/1 with exponential startups. INFOR, Vol. 11, No. 1, pp. 71-72, 1973.

2. Bell, C. E., Characterization and computation of optimal policies for operating an M/G/1 queueing system with removable server. Operations Research, Vol. 19, No. 1, pp. 208-218, 1971.

3. Borthakur, A., Medhi, J., & Gohain, R., Poisson input queueing systems with startup time and under control operating policy. Computers and Operations Research, Vol. 14, No. 1, pp. 33-40, 1987.

4. Doshi, B. T., Queueing system with vacations-a survey. Queueing System, Vol. 1, pp. 29-66, 1986.

5. Feinberg, E. A. & Kim, D. J., Bicriterion optimization of an M/G/1 queue with a removable server. Probability in the Engineering and Informational Sciences, Vol. 10, pp. 57-73, 1996.

6. Fuhrmann, S. W., & Cooper, R. B. Stochastic decompositions in the M/G/1 queue with generalized vacations. Operations Research, Vol. 33, pp. 1117-1129, 1985.

7. Heyman, D. P., Optimal operating policies for M/G/1 queueing system. Operations Research, Vol. 16, No. 2, pp. 362-382, 1968.

8. Hur, S., & Paik, S. J., The effect of different arrival rates on the N-policy of M/G/1 with server setup. Applied Mathematical Modelling, Vol. 23, No. 4, pp. 289-299, 1999.

9. Ke, J.-C., The operating characteristic analysis on a general input queue with N policy and a startup time. Mathematical Methods of Operations Research, Vol. 57, pp. 235-254, 2003.

10. Ke, J.-C., The optimal control of an M/G/1 queueing system with server vacations, startup and breakdowns. Computers and Industrial Engineering, Vol. 44, No. 4, pp. 567-579, 2003.

11. Kella, O., The threshold policy in the M/G/1 queue with server vacations. Naval Research Logistics, Vol. 36, pp. 111-123, 1989.

12. Kimura, T., Optimal control of an M/G/1 queueing system with removable server via diffusion approximation. European Journal of Operational Research, Vol. 8, No. 4, pp.390-398, 1981.

13. Lee, H. S., & Srinivasan, M. M., Control policies for the Mx/G/1 queueing system. Management Science, Vol. 35. pp. 708-721, 1989.

14. Lee, H. W., & Park, J. O., Optimal strategy in N policy production system with early set-up. Journal of the Operational Research Society, Vol. 48, No. 3, pp. 306-313, 1997.

15. Lee, H. W., Lee, S. S., Park, J. O., & Chae, K. C., Analyais of Mx/G/1 queue with N policy and multiple vacations. Journal of Applied Probability, Vol. 31, pp. 467-496, 1994.

16. Lee, S. S., Lee, H. W., & Chae, K. C., On a batch arrival queue with N policy and single vacation. Computers and Operations Research, Vol. 22, pp. 173-189, 1994.

17. Levy, Y., & Yechiali, U., Utilization of idle time in an M/G/1 queueing system. Management Science, Vol. 22. pp. 202-211, 1975.

18. Medhi, J., & Templeton, J. G. C., A Poisson input queue under N-policy and with a general start up time. Computers and Operations Research, Vol. 19, No. 1, pp. 35-41, 1992.

19. Takagi, H. (1991), Queueing analysis: A foundation of performance evaluation (Vol. I). Vacation and Priority Systems, Part I, Amsterdam: North-Holland.

20. Takagi, H., A M/G/1/K queues with N-policy and setup times. Queueing Systems, Vol. 14, No. 1-2, pp. 79-98, 1993.

21. Tijms, H.C. (1986), Stochastic Modelling and Analysis. Wiley, New York, NY.

22. Wang, K.-H., Optimal operation of a Markovian queueing system with a removable and non-reliable server. Microelectronics and Reliability, Vol. 35, No. 8, pp. 1131-1136, 1995.

23. Wang, K.-H., Optimal control of an M/Ek/1 queueing system with removable service station subject to breakdowns. Journal of the Operational Research Society, Vol. 48, No. 9, pp. 936-942, 1997.

24. Wang, K.-H., Chang, K.-W., & Sivazlian, B. D., Optimal control of a removable and non-reliable server in an infinite and a finite M/H2 /1 queueing system. Applied Mathematical Modelling, Vol. 23, No. 8, pp. 651-666, 1999.

25. Wang, K.-H., & Ke, J.-C., A recursive method to the optimal control of an M/G/1 queueing system with finite capacity and infinite capacity. Applied Mathematical Modelling, Vol. 24, No. 12, pp. 899-914, 2000.

26. Wang, K.-H., & Ke, J.-C., Control policies of an M/G/1 queueing system with a removable and non-reliable server. International Transactions in Operations Research, Vol. 9, No. 2, pp. 195-212, 2002.

27. Wang, K.-H., Optimal control of a removable and non-reliable server in an M/M/1 queueing system with exponential startup time. Mathematics Methods of Operations Research, Vol. 58, No 1, pp. 29-39, 2003.

28. Wang, K.-H., Kao, H.-T. & Chen, G.., Optimal Management of a Removable and Non-Reliable Server in an Infinite and a Finite M/ /1 Queueing System. Quality Technology & Quantitative Management, Vol. 1, No. 2, pp. 325-339, 2004.

29. Wang, K.-H., Wang, T.-Y. & Pearn, W.L., Optimal control of the N policy M/G/1 queueing system with server breakdowns and general startup times. Applied Mathematical Modelling(2007), (in press).

30. Yandin, M., & Naor P., Queueing systems with a removable service station. Operational Research Quarterly, Vol. 14, pp. 393-405, 1963.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top