跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏裕庭
研究生(外文):Yu-Ten Yan
論文名稱:性荷爾蒙對母鼠感覺運動皮質錐體細胞樹突棘密度之調控
論文名稱(外文):Gonadal Hormone Modulates the Dendritic Spines of the Sensorimotor Cortical Neurons of Adult Females Rats
指導教授:陳建榮陳建榮引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:38
中文關鍵詞:錐體細胞感覺運動皮質動情素黃體助孕素3D重建樹突樹突棘密度
外文關鍵詞:pyramidal neuronsensoritory cortexestrogenprogesterone3D reconstruction dendritedendritic spine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Gonadal hormones have recently been reported to alter the dendritic structures of hippocampal and even prefrontal cortical neurons. These findings open up the intriguing question as to whether gonadal hormones affect primary sensorimotor cortical functions by regulating the dendritic morphology of primary sensorimotor cortical neurons. Dendrites are the main receiving structures of neurons and dendritic spines are dynamic structures and their density may alter in response to changes in environment. To find out whether gonadal hormone affects primary sensorimotor cortical structures we examined the dendritic spine densities of layer III and V pyramidal neurons, output neurons of the primary sensorimotor cortex of control, ovarihysterectomized (OHE) and hormone pellet implanted OHE female rats. Three stages of the estrous cycle, proestrus, estrus, and diestrus were determined in control rats with vaginal smear. The dendritic arbors of layer III and V pyramidal neurons were revealed using fixed tissue intracellular dye injection technique and analyzed following 3-dimensional reconstruction. Our results indicated that the densities of dendritic spine on pyramidal neurons were dynamically regulated during the estrous cycle. Spines densities on both basal and apical dendrites of both layer III and V pyramidal neurons were significantly higher during the proestrous than estrous and diestrous phases of the cycle. OHE downregulated the dendritic spine densities of these two neurons significantly reduced 2 weeks post-operation. Fourteen days of estrogen pellet or progesterone pellet implantation restored the spine densities of OHE rats to estrous or diestrous levels. Despite these, none of the treatments affected the total, apical or basal dendritic lengths of these two pyramidal neurons. In summary, our results indicate that the dendritic spine densities of pyramidal neurons of the primary sensorimotor cortex of the female rats changed cyclically with their estrous cycle and this appeared to be mediated by female gonadal hormone. Thus, gonadal hormone appeared to be able to regulate primary sensimotor cortical function via regulating the dendritic spine densities of their output neurons. These results suggest strongly although indirectly that menopause may seriously impact cortical functions.
一、 中文摘要--------------------------------------------------------Ⅰ
二、 英文摘要--------------------------------------------------------Ⅱ
三、 前言-------------------------------------------------------------1
四、 材料與方法-------------------------------------------------------5
五、 結果-------------------------------------------------------------8
六、 討論------------------------------------------------------------10
七、 結論------------------------------------------------------------14
八、 表次------------------------------------------------------------15
九、 圖次------------------------------------------------------------20
十、 參考文獻--------------------------------------------------------32
1.Biernaskie, J., Corbett, D. 2001. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21:5272-5280.
2.Bonifazi, M., Ginanneschi, F., Volpe, R, Rossi, A. 2004. Effects of gonadal steroids on the input-output relationship of the corticospinal pathway in humans. Brain Res. 1011: 187-94.
3.Calizo, L.H. and Flanagan-Cato, L.M. 2000. Estrogen selectively regulates spine density within the dendritic arbor of rat ventromedial hypothalamic neurons. J. Neurosci. 20:1589-96.
4.Cameron, W. E., Averill, D. B. and Berger, A. J. 1985. Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase. J. Comp. Neurol. 231:91-101.
5.Carlisle H.J., Kennedy M.B. 2005. Spine architecture and synaptic plasticity. Trends Neurosci. 28:182-187.
6.Carrer, H.F. and Aoki, A. 1982. Ultrastructural changes in the hypothalamic ventromedial nucleus of ovariectomized rats after estrogen treatment. Brain Res. 240:221-33.
7.Chen, J.R., Wang, Y.J. and Tseng, G.F. 2003. The effect of epidural compression on cerebral cortex: a rat model. J. Neurotrauma 20: 767-780.
8.Chen, J.R., Wang, Y.J. and Tseng, G.F. 2004 The effect of decompression and exogenous NGF on cerebral cortex subjected to compression. J. Neurotrauma 21: 1640-1651.
9.Colonnier, M. 1968. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9:268-287.
10.Cooke, B.M., Woolley, C.S. 2005. Gonadal hormone modulation of dendrites in the mammalian CNS. J. Neurobiol. 64:34-46.
11.El-Bakri N.K., Islam A., Suliman I., Lindgren U., Winblad B., Adem A. 2004. Ovariectomy and gonadal hormone treatment: effects on insulin-like growth factor-1 receptors in the rat brain. Growth Horm IGF Res. 14:388-393.
12.El-Bakri, N.K., Islam, A., Zhu S., Elhassan, A., Mohammed, A., Winblad, B., Adem, A. 2004. Effects of estrogen and progesterone treatment on rat hippocampal NMDA receptors: relationship to Morris water maze performance. J. Cell. Mol. Med. 8:537-544.
13.Fargo, K.N. and Sengelaub, D.R. 2004. Testosterone manipulation protects motoneurons from dendritic atrophy after contralateral motoneuron depletion. J. Comp. Neurol. 469:96-106.
14.Ferrer, I., Guionnet, N., Cruz-sanchez, F., and Tunon, T. 1990. Neuronal alterations in patients with dementia: a Golgi study on biopsy samples. Neurosci. Lett. 114:11-16.
15.Fontaine-Lenoir, V., Chambraud, B., Fellous, A., David, S., Duchossoy, Y., Baulieu, E.E., Robel, P. 2006. Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc. Natl. Acad. Sci. USA 103:4711-4716.
16.Frankfurt, M., Gould, E., Woolley, C.S., McEwen, B. S. 1990. Gonadal steroids modify dendritic spine density in ventromedial hypothalamic neurons: a Golgi study in the adult rat. Neuroendocrinology 51:530-5.
17.Gomez, D.M. and Newman, S.W. 1991. Medial nucleus of the amygdala in the adult Syrian hamster: a quantitative Golgi analysis of gonadal hormonal regulation of neuronal morphology. Anat. Rec. 231:498-509.
18.Gorski, J.A., Zeiler, S.R., Tamowski, S., Jones, K.R. 2003. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J. Neurosci. 23:6856-6865.
19.Gould, E., Woolley, C.S., Frankfurt, M., McEwen, B.S. 1990. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 10:1286-91.
20.Gutierrez, H., Dolcet, X., Tolcos, M., Davies, A. 2004. HGF regulates the development of cortical pyramidal dendrites. Development (Cambridge, England) 131:3717-3726.
21.Hart, S. A., Patton, J. D. and Woolley, C. S. 2001. Quantitative analysis of ER alpha and GAD colocalization in the hippocampus of the adult female rat. J. Comp. Neurol. 440:144-55.
22.Horner, C.H. 1993. Plasticity of the dendritic spine. Progress in neurobiology 41:281-321.
23.Johansson, B.B. 2003. Environmental influence on recovery after brain lesions--experimental and clinical data. J. Rehabil. Med 11-16.
24.Jones, K.J. 1993. Gonadal steroids as promoting factors in axonal regeneration. Brain Res. Bull. 30:491-8.
25.Jones, K.J., Brown, T.J., Damaser, M. 2001. Neuroprotective effects of gonadal steroids on regenerating peripheral motoneurons. Brain Res. Brain Res. Rev. 37:372-82.
26.Kapfhammer, J.P. 2004. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog. Histochem. Cytochem. 39:131-182.
27.Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. 2002. Dendritic spine structures and functions. Nihon Shinkei Seishin Yakurigaku Zasshi 22:159-164
28.Kinsley, C.H., Trainer, R., Stafisso-Sandoz, G., Quadros, P., Marcus, L.K., Hearon, C., Meyer, E.A., Hester, N., Morgan, M., Kozub, F.J., Lambert, K.G. 2006. Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines. Horm. Behav. 49:131-142.
29.Koch, C., Zador, A., Brown, T.H. 1992. Dendritic spines: convergence of theory and experiment. Science New York, NY 256:973-974.
30.Kolb, B., Gorny, G., Cote, S., Ribeiro-da-Silva, A., Cuello, A.C. 1997a. Nerve growth factor stimulates growth of cortical pyramidal neurons in young adult rats. Brain Res. 751:289-294.
31.Kolb, B., Stewart, J., and Sutherland, R.J. 1997b. Recovery of function is associated with increased spine density in cortical pyramidal cells after frontal lesions and/or noradrenaline depletion in neonatal rats. Behavioural Brain Res. 89:61-70.
32.Kolb, B., Cote, S., Ribeiro-da-Silva, A. and Cuello, A.C. 1997c. Nerve growth factor treatment prevents dendritic atrophy and promotes recovery of function after cortical injury. Neuroscience 76:1139-1151.
33.Kritzer, M. 2004. The distribution of immunoreactivity for intracellular androgen receptors in the cerebral cortex of hormonally intact adult male and female rats: localization in pyramidal neurons making corticocortical connections. Cereb. Cortex 14:268-280.
34.Kuge T, Asayama T, Kakuta S, Murakami K, Ishikawa Y, Kuroda M, Imai T, Seki K, Omoto M, Kishi K 1993. Effect of ethanol on the development and maturation of synapses in the rat hippocampus: a quantitative electron-microscopic study. Environmental research 62:99-105.
35.Kujawa, K.A., Emeric, E. and Jones, K. J. 1991. Testosterone differentially regulates the regenerative properties of injured hamster facial motoneurons. J. Neurosci. 11:3898-906.
36.Kujawa, K. A. and Jones, K. J. 1990. Testosterone-induced acceleration of recovery from facial paralysis in male hamsters: temporal requirements of hormone exposure. Physiol. Behav. 48:765-8.
37.Kujawa, K.A., Kinderman, N.B. and Jones, K.J. 1989. Testosterone-induced acceleration of recovery from facial paralysis following crush axotomy of the facial nerve in male hamsters. Exp. Neurol. 105:80-5.
38.Lippman, J., Dunaevsky, A. 2005. Dendritic spine morphogenesis and plasticity. J. Neurobiol. 64:47-57.
39.Madeira, M.D., Ferreira-Silva, L. and Paula-Barbosa, M.M. 2001. Influence of sex and estrus cycle on the sexual dimorphisms of the hypothalamic ventromedial nucleus: stereological evaluation and Golgi study. J. Comp. Neurol. 432:329-45.
40.Marin-Padilla, M. 1972. Structural abnormalities of the cerebral cortex in human chromosomal aberrations. A Golgi study. Brain Res. 44:625-629.
41.McEwen, B.S. and Woolley, C.S. 1994. Estradiol and progesterone regulate neuronal structure and synaptic connectivity in adult as well as developing brain Exp. Gerontol. 29:431-6.
42.McKinney, R.A. 2005. Physiological roles of spine motility: development, plasticity and disorders. Biochem. Soc. Trans. 33:1299-1302.
43.Muller, W., Connor, J.A. 1992. Ca2+ signalling in postsynaptic dendrites and spines of mammalian neurons in brain slice. Journal of physiology, Paris 86:57-66.
44.Murphy, D.D., Cole, N.B., Greenberger, V. and Segal, M. 1998a. Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J. Neurosci. 18:2550-9.
45.Murphy, D.D., Cole, N.B. and Segal, M. 1998b. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95:11412-7.
46.Niblock, M.M., Brunso-Bechtold, J.K., Riddle, D.R. 2000. Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J. Neurosci. 20:4165-4176.
47.Paul, L. A. and Scheibel, A. B. 1986. Structural substrates of epilepsy. Adv. Neurol. 44:775-786.
48.Peters, A., and Kaiserman-Abramof I.R. 1970. The small pyramidal neurons of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127:321-356.
49.Radley, J.J., Rocher, A.B., Miller, M., Janssen, W.G., Liston, C., Hof, P.R., McEwen, B.S., Morrison, J.H. 2006. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16:313-320.
50.Rudick, C.N. and Woolley, C.S. 2001. Estrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat. J. Neurosci. 21: 6532-43.
51.Ruiz-Marcos, A., Sanchez-Toscano, F., Escobar del Rey, F. and Morreale de Escobar, G. 1979. Severe hypothyroidism and the maturation of the rat cerebral cortex. Brain Res. 162:315-29.
52.Sakamoto, H., Ukena, K., Tsutsui, K. 2002. Dendritic spine formation in response to progesterone synthesized de novo in the developing Purkinje cell in rats. Neurosci. Lett. 322:111-115.
53.Sakamoto, H., Mezaki, Y., Shikimi, H., Ukena, K., Tsutsui, K. 2003. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology 144:4466-4477.
54.Scheibel, M.E., Lindsay, R.D., Tomiyasu, U. and Scheibel, A.B. 1975. Progressive dendritic changes in aging human cortex. Experimental neurology 47: 392-403.
55.Seib, L.M, Wellman, C.L. 2003. Daily injections alter spine density in rat medial prefrontal cortex. Neurosci. Lett. 337:29-32.
56.Sharma, P.K., Thakur, M.K. 2006. Expression of estrogen receptor (ER) alpha and beta in mouse cerebral cortex: effect of age, sex and gonadal steroids. Neurobiology of aging 27:880-887.
57.Shikimi, H., Sakamoto, H., Mezak,i Y., Ukena, K., Tsutsui, K. 2004. Dendritic growth in response to environmental estrogens in the developing Purkinje cell in rats. Neurosci. Lett. 364:114-118.
58.Shughrue, P.J., Scrimo, P.J., Merchenthaler, I. 2000. Estrogen binding and estrogen receptor characterization (ERalpha and ERbeta) in the cholinergic neurons of the rat basal forebrain. Neuroscience 96:41-49.
59.Tseng, G.F. and Prince, D.A. 1993. Heterogeneity of rat corticospinal neurons. J. Comp. Neurol. 335: 92-108.
60.Tseng, G.F. and Hu, M.E. 1996. Axotomy induces retraction of the dendritic arbor of adult rat rubrospinal neurons. Acta. Anat. 155:184-193.
61.Tseng, G.F. and Prince, D.A. 1996. Structural and functional alterations in rat corticospinal neurons following axotomy. J. Neurophysiol. 75:248-267.
62.Tseng, G.F., Royce, G.J. 1986. A Golgi and ultrastructural analysis of the centromedian nucleus of the cat. J. Comp. Neurol. 245:359-378.
63.Ulfhake, B. and Cullheim, S. 1988. Postnatal development of cat hind limb motoneurons. III: Changes in size of motoneurons supplying the triceps surae muscle. J. Comp. Neurol. 278:103-20.
64.Walker, D. W., Hunter, B. E. and Abraham, W. C. 1981. Neuroanatomical and functional deficits subsequent to chronic ethanol administration in animals. Alcoh. Clin. Exp. Res. 5:267-282.
65.Washburn, S. A., Lewis, C. E., Johnson, J. E., Voytko, M. L. and Shively, C. A. 1997. 17alpha-Dihydroequilenin increases hippocampal dendritic spine density of ovariectomized rats. Brain Res. 758:241-4.
66.Weiland, N.G., Orikasa, C., Hayashi, S. and McEwen, B.S. 1997. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J. Comp. Neurol. 388:603-12.
67.Woolley, C.S., Gould, E., Frankfurt, M. and McEwen, B.S. 1990. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 10:4035-9.
68.Woolley, C.S. and McEwen, B.S. 1992. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12:2549-54.
69.Woolley, C.S., McEwen, B.S. 1993. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J. Comp. Neurol. 336:293-306.
70.Woolley, C.S., Weiland, N.G., McEwen, B.S., Schwartzkroin, P.A. 1997. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J. Neurosci. 17:1848-1859.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊