跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俊緯
研究生(外文):Jiun-Wei Guo
論文名稱:傳統市場與屠宰場仿土雞沙門氏桿菌污染之調查研究
論文名稱(外文):Investigation on Salmonella contamination of Simulated Native Chicken from Traditional Marketplace and Registered Slaughterhouse
指導教授:劉正義劉正義引用關係
指導教授(外文):Cheng-I Liu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:傳統市場屠宰場仿土雞沙門氏桿菌
外文關鍵詞:Registered SlaughterhouseTraditional MarketplaceSimulated Native ChickenSalmonella
相關次數:
  • 被引用被引用:15
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
沙門氏桿菌能引起人類、家禽、家畜及野生動物之間的相互感染,也為人類食源性胃腸炎主要病因之一,尤其是雞肉、豬肉和蛋品被認為是沙門氏桿菌傳染人類的主要來源。
本調查為了解屠宰場與傳統市場仿土雞因為屠宰作業不同,是否會造成沙門氏桿菌陽性率有所差異。因此,自2006年6月至2007年3月,收集屠宰場與傳統市場仿土雞之新鮮無破損內臟,並自同一雞隻肝、膽及腸道內容物分離沙門氏桿菌。結果仿土雞在傳統市場之分離率為88%(132/150),屠宰場則為37%(56/150);而肝臟為45% (134/300)及膽囊有54%(161/300)之分離率皆高於腸內容物17%(50/300)。在分離株之血清型鑑定結果,屠宰場分離株以S. Schwarzengrund(60.5%)為主,來自傳統市場者則為S. Albany (61.7%)。在抗菌劑感受性試驗中,以對Ceftriaxone感受性最高,對Colistin則有較高的抗藥性。
此外,也針對傳統市場雞隻沙門氏桿菌高陽性率結果是否與採材時間先後有關,共進行六次採材;每次於雞隻運輸到達後0-1小時及6小時分別各取六付新鮮內臟分離沙門氏桿菌。結果顯示在雞隻到達後6小時沙門氏桿菌分離率為78%(28/36),明顯高於0-1小時之14%(5/36)。雖然影響傳統市場沙門氏桿菌高分離率之因子眾多,但是陽性雞隻經過緊迫後排菌於糞便中,進而造成其他雞隻感染,且隨著時間的增加將提高其他陰性雞隻感染的機會。
以上研究結果顯示沙門氏桿菌在仿土雞不但分離率高且抗藥性強。但是分離株並非人類常見之病原性血清型,故容易被忽視。此調查可提供政府機關推動禁止傳統市場販售及屠宰活雞相關政策之參考。
Salmonella spp. are transmitted among human, poultry, domestic animal and wild animal, and are the major pathogens to cause dietary gastroenteritis in human through in contact with chicken, pork and egg-products. Therefore, to obtain the data of Salmonella contamination rate of slaughtered animals are important for the purpose of public health.
The present study was made to isolate and to identify Salmonella spp. from the slaughtered chickens. The tested chickens were sampled from two traditional marketplaces and one registered slaughterhouse from June 2006 through March 2007. The gall bladder, liver, and caecal content of the tested chickens were sampled for isolation. All the isolated strains were analyzed by ISO 6579 to identify their serovars. The results showed that Salmonella prevalence of these tested chickens from traditional marketplaces and registered slaughterhouse were 88% and 37%, respectively. Higher isolation rates were found in the specimens of gall bladder and liver. The major serovars of the isolated Salmonella spp. were S. Albany(61.7%) from traditional marketplaces and S. Schwarzengrund(60.5%)from registered slaughterhouse. The results of antibiotic susceptibilities test demonstrated that ceftriaxone was the most sensitive one, whereas, colistin was the most resistant one in these tested drugs.
The effect on isolation rate in different holding times before chickens slaughtered in traditional marketplaces was also investigated. The results showed that the isolation rates in longer holding time(6hr)were higher than shorter holding time(0-1hr).
The high isolation rate of Salmonella spp. in simulated native chickens found in this study were also more resistant to the variety of drugs. Almost all the isolated serovars were not known as the important pathogens to public health in human.
頁數
中文摘要--------------------------Ⅰ
英文摘要--------------------------Ⅱ
目錄------------------------------Ⅲ
表次------------------------------Ⅳ
圖次------------------------------Ⅵ
第一章 前言-----------------------1
第二章 文獻探討-------------------2
第三章 材料與方法-----------------31
第四章 實驗結果-------------------43
第五章 討論-----------------------62
參考文獻---------------------------72
附表-------------------------------81
附圖-------------------------------87
王裕智。台灣屠體沙門氏菌流行病學及抗藥性研究。碩士論文。國立中興大學獸醫公共衛生研究所。2005。
王政雄,施泰華,江啟平,鄭聰旭,丘志威。超級市場、傳統市場及家禽電宰場雞屠體之生菌數和沙門氏桿菌污染調查。動物保護公共論壇論文集。財團法人中央畜產會。台北。189-202。2004。
呂榮修。雞沙門氏桿菌症。禽病診斷彩色圖譜。中華民國養雞協會會刊雜誌社,台北。210-218。1995。
吳致銓。以聚合酶鏈鎖反應及MSRV方法偵測豬隻屠體表面之沙門氏桿菌。碩士論文。國立中興大學獸醫病理學研究所。2003。
周崇熙,蔡向榮。台灣肉雞沙氏桿菌、彎曲桿菌之盛行率及抗菌劑感受性調查。中華獸醫誌 27: 27-38, 2001。
邱蘭皓。台灣南部地區雞場沙門氏菌流行病學研究:血清群、抗藥性及基因型分析。碩士論文。國立嘉義大學動物科學系暨研究所。2004。
林興誠。傳統市場家禽活體屠宰問題面面觀。動物保護公共論壇論文集。財團法人中央畜產會。台北。179-186。2004。
徐本立。台灣地區不同規模肉雞電宰場之屠宰衛生品質調查。中興大學畜產學系研究所碩士論文。2001。
張照夫。沙氏桿菌症Salmonellosis。臨床豬病學,第五版。台北,華香園。510-518 頁。1996。
黃子秋,呂學重。非傷寒沙門氏桿菌血症78例臨床研究。長庚醫誌。16: 251-256。1993。
潘子明。食品中毒的幕後黑手沙門氏桿菌。科學月刊。27: 298-307。1996。
蔡文城,陳宏亮,楊慶曙,金陽和。GFB-12E 電腦密碼細菌鑑定系統。台北,九州。1987。
蔡文城。實用臨床微生物學,第八版。台北,九洲。1997。
謝志宏。種禽及孵化蛋之沙門氏桿菌的疫情與抗藥性分析。碩士論文。國立嘉義大學獸醫學系研究所。2006。
Altekruse SF, Cohen ML, and Swerdlow DL. Emerging foodborne diseases. Emerg Infect Dis 3: 285-293, 1997.
Andrews WH, June GA, Sherrod PS, Hammack TS, and Amaguana RM. Salmonella. In: Bacteriological Analytical Manual, 8th ed. AOAC International, Gaithersbug, MD 501-520, 1998.
Antunes P, Re´u C, Sousa JC, Peixe L, and Pestana N. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. Int J food Microbiol 82: 97- 103, 2003.
Bangtrakulnonth A, Pornrungwong S, Pulsrikarn C, Boonmar S, and Yamaguchi K. Recovery of Salmonella using a combination of selective enrichment media and antimicrobial resistance of isolates in meat in Thailand. Southeast Asian J Trop Med Public Health 37: 742-746, 2006.
Barry AL, Jones RN, Thornsberry C, Ayers LW, Gerlach EH, and Sommers HM. Antibacterial activities of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin, and nalidixic acid. Antimicrob Agents Chemother 25: 633-637, 1984.
Biendo M, Thomas D, Dechepy O, Laurans G, and Eb F. Molecular epidemiology of ampicillin-resistant clinical isolates of Salmonella enterica serovar Typhimurium. Int J Med Microbiol 293: 219-23, 2003.
Billy TJ and Wachsmuth IK. Hazard analysis and critical control point systems in the United States Department of Agriculture regulatory policy. Rev Sci Tech 16: 342-8, 1997.
Blackburn CW. Rapid and alternative methods for the detection of Salmonella in foods. J Appl Bacteriol 75: 199-214, 1993.
Caprioli A, Busani L, Martel JL, and Helmuth R. Monitoring of antibiotic resistance in bacteria of animal origin: Epidemiological and microbiological methodologies. Int J Antimicrob Agents 14: 295-301, 2000.
Chaubal LH and Holt PS. Characterization of swimming motility and identification of flagellar proteins in Salmonella Pullorum isolates. Am J Vet Res 60: 1322-1327, 1999.
Cherrington CA and Huis in''t Veld JH. Development of a 24 h screen to detect viable Salmonellas in faeces. J Appl Bacteriol 75: 58-64, 1993.
Chiou CS, Huang JF, Tsai LH, Hsu KM, Liao CS, and Chang HL. A simple and low-cost paper-bridged method for Salmonella phase reversal. Diagn Microbiol Infect Dis 54: 315-317, 2006.
Clyde VL, Ramsay EC, and Bemis DA. Fecal shedding of Salmonella in exotic felids. J Zoo Wildl Med 28: 148-152, 1997.
Davies RH and Wray C. An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross-contamination hazards in commercial hatcheries. Int J Food Microbiol 24: 147-160, 1994.
Endtz HP, van den Braak N, van Belkum A, Kluytmans JA, Koeleman JG, Spanjaard L, Voss A, Weersink AJ, Vandenbroucke-Grauls CM, Buiting AG, van Duin A, and Verbrugh HA. Fecal carriage of vancomycin-resistant enterococci in hospitalized patients and those living in the community in The Netherlands. J Clin Microbiol 35: 3026-3031, 1997.
Evans MR, Salmon RL, Nehaul L, Mabl S, Wafford L, Nolan-Farrell MZ, Gardner D, and Ribeiro CD. An outbreak of Salmonella typhimurium DT170 associated with kebab meat and yoghurt relish. Epidemiol Infect 122: 377-384, 1999.
Faldynova M, Pravcova M, Sisak F, Havlickova H, Kolackova I, Cizek A, Karpiskova R, and Rychlik I. Evolution of antibiotic resistance in Salmonella enterica serovar Typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother 47: 2002-2005, 2003.
Fricker CR. The isolation of Salmonellas and Campylobacters. J Appl Bacteriol 63: 99-116, 1987.
Gast RK, Mitchell BW, and Holt PS. Evaluation of culture media for detecting airborne Salmonella Enteritidis collected with an electrostatic sampling device from the environment of experimentally infected laying hens. Poult Sci 83: 1106-1111, 2004.
Gast RK and Shivaprasad HL. Salmonella Infections. In: Saif YM, ed. Diseases of poultry. 11th ed. Iowa State University Press, Ames, Iowa, 567-599, 2003.
Genigeorgis CA. Quality control for fermented meats. J Am Vet Med Asso 169: 1220-1228, 1976.
Gray JT and Fedorka-Cray PJ. Long-term survival and infectivity of Salmonella Choleraesuis. Berl Munch Tierarztl Wochenschr 114: 370-374, 2001.
Holt PS and Chaubal LH. Detection of motility and putative synthesis of flagellar proteins in Salmonella Pullorum cultures. J Clin Microbiol 35: 1016-1020, 1997.
Hudson CR, Quist C, Lee MD, Keyes K, Dodson SV, Morales C, Sanchez S, White DG, and Maurer JJ. Genetic relatedness of Salmonella isolates from nondomestic birds in southeastern united states. J Clin Microbiol 38: 1860-1865, 2000.
Jensen AN, Sorensen G, Baggesen DL, Bodker R and Hoorfar J. Addition of Novobiocin in pre-enrichment step can improve Salmonella culture protocol of modified semisolid Rappaport-Vassiliadis. J Microbiol Methods 249-255, 2003.
Juven BJ, Cox NA, Bailey JS, Thomson JE, Charles OW, and Schutze JV. Recovery of Salmonella from artificially contaminated poultry feeds in non-selective and selective broth media. J Food Prot 47: 299-302, 1984.
Kudaka J, Itokazu K, Taira K, Iwai A, Kondo M, Susa T, and Iwanaga M. Characterization of Salmonella isolated in Okinawa, Japan. Jpn J Infect Dis 59 : 15-19, 2006.
Lailler R, Grimont F, Jones Y, Sanders P, and Brisabois A. Subtyping of Salmonella Typhimurium by pulsed-field gel electrophoresis and comparisons with phage types and resistance types. Pathol Biol 50: 361-368, 2002.
Lauderdale TL, Aarestrup FM, Chen PC, Lai JF, Wang HY, Shiau YR, Huang IW, and Hung CL. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn Microbiol Infect Dis 55: 149-155, 2006.
Mann DD and Frame GM. Pharmacokinetic study of danofloxacin in cattle and swine. Am J Vet Res 53:1022-1026, 1992.
McEwen SA and Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis 34: S93-106, 2002.
Mengozzi G, Intorre L, Bertini S, and Soldani G. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and intramuscular administrations in sheep. Am J Vet Res 57: 1040-1043, 1996.
Minor LL. Facultatively anaerobic gram-negative Rods. In J G Holt, Bergey’s Manual of Systematic Bacteriology, 1st ed, Williams and Wilkinsm, Baltomore, USA. 427-458, 1988.
Morris JG Jr. The color of hamburger: slow steps toward the development of a science-based food safety system in the United States. Trans Am Clin Climatol Assoc114:191-201, 2003.
Murase T, Yamada M, Muto T, Matsushima A, and Yamai S. Fecal excretion of Salmonella enterica serovar Typhimurium following a food-borne outbreak. J Clin Microbiol 38:3495-3497. 2000.
Nakamura S. Veterinary use of new quinolones in Japan. Drugs 49: 152-158, 1995.
Neer TM. Clinical pharmacologic features of fluoroquinolone antimicrobial drugs. J Am Vet Med Assoc 193: 577-580, 1988.
Opengart KN, Tate CR, Miller RG, and Mallinson ET. The use of drag-swab technique and improved selective plating media in the recovery of Salmonella arizonae (7:1,7,8) from turkey breeder hens. Avian Dis 35:228-230, 1991.
Padungtod P and Kaneene JB. Salmonella in food animals and humans in northern Thailand. Int J Food Microbiol 108: 346-54, 2006.
Pan TM, Chiou CS, Hsu SY, Huang HC, Wang TK, Chiu SI, Yea HL, and Lee CL. Food-borne disease outbreaks in Taiwan, 1994. J Formos Med Assoc 95: 417-420, 1996.
Pan TM, Wang TK, Lee CL, Chien SW, and Horng CB. Food-borne disease outbreaks due to bacteria in Taiwan, 1986-1995. J Clin Microbiol 35: 1260-1262, 1997.
Pangloli P, Dje Y, Oliver SP, Mathew A, Golden DA, Taylor WJ, and Draughon FA. Evaluation of methods for recovery of Salmonella from dairy cattle, poultry, and swine farms. J Food Prot 66: 1987-1995, 2003.
Poppe C, Mcfadden KA, and Denczuk WH. Drug resistance, plasmids, biotypes and susceptibility to bacteriophages of Salmonella isolated from poultry in Canada. Int J Food Microbiol 30 :325-344, 1996.
Rathman M, Sjaastad MD, and Falkow S. Acidification of phagosomes containing Salmonella Typhimurium in murine macrophages. Infect Immun 64: 2765-2773, 1996.
Rusal G, Khair J, Radu S, Cheah CT, and Yassin RM. Prevalence of Salmonella
in broilers at retail outlets, processing plants and farms in Malaysia. Int J Food
Microbiol 33: 183-194, 1996.
Schoeni JL, Glass KA, McDermott JL, and Wong ACL. Growth and penetration of Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium in eggs. Int J food Microbiol 24: 385-386, 1995.
Schwartz KJ, Straw BE, D’Allaire S Mengeling WL, and Taylor DJ. Salmonellosis. In Diseases of swine, Iowa State University Press Iowa USA. 536-551, 1999.
Smith NH and Selander RK. Molecular genetic basis for complex flagellar antigen expression in triphasic serovar of Salmonella. Proc Natl Acad Sci USA 88: 956-960, 1991.
Stoffregen DA, Wooster GA, Bustos PS, Bowser PR, and Babish JG. Multiple route and dose pharmacokineties of enrofloxacin in juvenile Atlantic salmon. J Vet Pharmacol Ther 20: 111-123, 1997.
Su LH, Chiu CH, Wu TL, Chu C, Chia JH, Kuo AJ, Lee CC, Sun CF, and Ou JT. Molecular epidemiology of Salmonella enterica serovar Enteritidis isolated in Taiwan. Microbiol Immunol 46: 833-840, 2002.
Swanenburg M, van der Wolf PJ, Urlings HAP, Snijders JMA, and van Knapen F. Salmonella in slaughter pigs: the effect of logistic slaughterprocedures of pigs on the prevalence of Salmonella in pork. Int J Microbiol 70: 231-242, 2001.
Swartz MN. Human diseases caused by foodborne pathogens of animal origin. Clin Infect Dis 34: 111-122, 2002.
Thomason BM, Dodd DJ, and Cherry WB. Increased recovery of Salmonellae from environmental samples enriched with buffered peptone water. Appl Environ Microbiol 34: 270-273, 1977
Thomason BM and Dodd DJ. Enrichment procedures for isolating Salmonellae from raw meat and poultry. Appl Environ Microbiol 36: 627-628, 1978.
Threlfall EJ, Ward LR, Frost JA, and Willshaw GA. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol 62: 1-5, 2000.
Tran TP, Ly TL, Nguyen TT, Akiba M, Ogasawara N, Shinoda D, Okatani TA, and Hayashidani H. Prevalence of Salmonella spp. in pigs, chickens and ducks in the Mekong Delta, Vietnam. J Vet Med Sci 66: 1011-1014, 2004.
Tsolis RM, Baumler AJ, Stojiljkovic I, and Heffron F. Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol. 177: 4628-4637, 1995.
van den Bogaard AE and Stobberingh EE. Epidemiology of resistance to antibiotics links between animals and humans. Int J Antimicrob Agents 14:327-335, 2000.
van der Zee H and Huis in’t Veld JHJ. Methods for the rapid detection of Salmonella In: Salmonella in domestic animals. Wray C and Wary A. CABI publishing. 373-392, 2000.
Vugia DJ, Samuel M, Farley MM, Marcus R, Shiferaw B, Shallow S, Smith K, and Angulo FJ. Invasive Salmonella infections in the United States, FoodNet, 1996-1999: incidence, serotype distribution, and outcome. Clin Infect Dis 38 Suppl 3: S149-156, 2004.
Waltman WD, Horne AM, and Pirkle C. Comparative analysis of media and methods for isolating Salmonella from poultry and environmental samples. In Proceeding of Symposium on the Diagnosis of Salmonella Infections. United States Animal Health Association and American Association of Laboratory Veterinary Diagnosticians. 1-14, 1995.
Wang CH, Chiou JH, Tsai HJ, Shieh HK, Shuen JH, Chen CL, and Lien YY. Serological Prevalence of Salmonella Enterica Serovars Enteritidis and Pullorum in Different Types of Chickens in Taiwan During 2005. Taiwan Vet J 33: 14-19, 2007.
Wang TK, Tseng TC, Lee JH, Wang WT, Tsai JL, Ho SI, and Pan TM. [Analysis of Salmonella serovars in Taiwan by the phase induction method]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 27: 13-24, 1994.
Witte W. Ecological impact of antibiotic use in animals of different complex microflora: environment. Int J Antimicrob Agents 14: 321-325, 2000.
Wonderling L, Pearce R, Wallace M, Call JE, Feder I, Tamplin M, and Luchansky JB. Use of pulsed-field gel electrophoresis to characterize the heterogeneity and clonality of Salmonella isolates obtained from the carcasses and feces of swine at slaughter. Appl Environ Microbiol 69: 4177-4182, 2003.
Zhang L, Yan Z, and Ryser ET. Comparison of the reveal test, the U.S. Food and Drug Administration culture method, and selective media for recovery of Salmonella enteritidis from commercial egg layer flock environments. J Food Prot 69: 2766-2769, 2006.
http://ec.europa.eu/food/food/biosafety/salmonella/index_en.htm
http://www.coa.gov.tw/show_index.php
http://www.lca.org.tw/tws/40file/40-p2.htm
http://www.kcom.edu/.../ Website/Lects/Bacteria.htm
http://www.naif.org.tw/home.htm
http://www.poultry.org.tw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top