(54.236.62.49) 您好!臺灣時間:2021/03/06 11:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宜生
研究生(外文):Yi-Shin Lin
論文名稱:類小腦神經網路於機電設備故障診斷之應用
論文名稱(外文):Applications of Cerebellar Model Articulation Controller Neural Network on Fault Diagnosis of Mechanical and Electrical Equipments
指導教授:洪清寶
指導教授(外文):Chin-Pao Hung
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:資訊與電能科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:83
中文關鍵詞:水循環系統汽輪發電機類小腦神經網路故障診斷
外文關鍵詞:water circulation systemsteam turbineCMAC neural networkfault diagnosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:577
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨在於應用類小腦神經網路(Cerebellar Model Articulation Controller Neural Network)作為診斷技術的理論基礎,並以水循環系統及大型汽輪發電機故障為範例,驗證本論文所提出方法的優越性。以水循環系統為例,依據所收集之故障樣本種類,建構類小腦模式的診斷架構,以梯度衰減法進行記憶權值的訓練。訓練完成的診斷架構即可進行水循環系統的故障診斷。而為了驗證診斷技術的抗雜訊性,文中加入雜訊作測試,測試結果均證明本文所提出方法的可行性及正確性。本文所提出的診斷技術可應用於各型的機電設備系統,對於大型汽輪發電機組的診斷架構,本論文亦作驗證。並提出以微控制器為核心的故障診斷裝置設計,故障資料的收集、記憶權值的訓練及機電設備故障診斷皆可透過此一可攜式診斷器的設計加以實現,不同於習知技術的電腦模擬。最後利用網路傳輸技術開發遠端故障診斷系統,透過遠端資料傳送進行故障診斷,以突破區域性之限制。
The objective of this thesis is to study the applications of cerebellar model articulation controller (CMAC) neural network on the fault diagnosis of mechanical and electrical equipments. To demonstrate the feasibility of the proposed scheme, we take water circulation system and steam turbine generator sets as examples. Depending on the pstterns collection of each possible fault type, we built the diagnosis architecture based on the CAMC neural network firstly. Then a steepest descent learning rule is used to train the diagnosis system until the cost function smaller than a small positive value. Finally, the diagnosis system can be used to diagnose the fault types of water circulation system or turbine generator system. In the case study, the diagnosis results demonstrated the proposed scheme outperforms than traditional schemes on the correctness, noise rejection ability and the learning speed.
In this thesis, the proposed diagnosis system is implemented on a personal computer and microcontroller system simultaneously. On the personal computer, the user can input the diagnosed data by a friendly interface and obtain the diagnosis results. Also, a remote fault diagnosis web site is built in our laboratory to benefit the data collection and diagnosis test for remote users. On the microcontroller system, a portable diagnosis apparatus is implemented to benefit the fault diagnosis on the work field. All the necessary technology described above will be discussed in the thesis.
中文摘要 ---------------------------------------------i
英文摘要 -------------------------------------------iii
誌謝 ------------------------------------------------v
目錄 -----------------------------------------------vi
表目錄 ---------------------------------------------ix
圖目錄 ----------------------------------------------x
符號說明 ------------------------------------------xiv
第一章 緒論---------------------------------------1
第二章 機電設備之故障診斷----------------------------6
2.1 機電設備故障診斷發展-----------------------------6
2.2 故障診斷方法之探討------------------------------7
2.2.1 傳統機電設備故障診斷法-----------------------9
2.2.2 人工智慧故障診斷法--------------------------10
第三章 類小腦神經網路故障診斷法---------------------11
3.1 神經網路簡介--------------------------------11
3.1.1 生物神經元模型---------------------------11
3.1.2 人工神經元簡介及運算----------------------12
3.1.3 類神經網路基本架構------------------------14
3.2 類小腦神經網路理論----------------------------16
3.3 類小腦模式神經網路診斷系統之建立----------------17
3.3.1 輸入訊號之量化-------------------------------19
3.3.2 激發位址、編碼與輸出值------------------------20
3.3.3 激發記憶體權值調整---------------------------20
3.3.4 收斂性、學習效果評估-------------------------21
3.3.5 容錯能力-----------------------------------22
3.3.6 類小腦模式神經網路診斷流程-------------------22
第四章 案例研究------------------------------------30
4.1 水循環系統故障診斷案例------------------------30
4.1.1 水循環系統及運作原理----------------------30
4.1.2 水循環故障診斷系統----------------------32
4.1.3 水循環故障診斷系統結果及分析---------------34
4.2 大型汽輪機診斷案例----------------------------42
4.2.1 大型汽輪發電機簡介及說明----------------------42
4.2.2 大型汽輪發電機故障診斷系統--------------------43
4.2.3 大型汽輪發電機故障診斷系統結果及分析-----------45
第五章 軟、硬體技術之實現----------------------------56
5.1 軟體撰寫----------------------------------------56
5.2 硬體電路設計------------------------------------61
5.2.1 電源--------------------------------------62
5.2.2 晶片驅動及燒錄電路---------------------------63
5.2.3 顯示電路及矩陣式鍵盤-------------------------64
第六章 遠端故障診斷系統的實現------------------------72
6.1 遠端診斷系統概述---------------------------------72
6.2 系統之建立--------------------------------------74
第七章 結論及未來研究方向----------------------------77
參考文獻 ---------------------------------------------79
附錄 -------------------------------------------------82
自傳 -------------------------------------------------83
[1] H. J. Cho and J. K. Park, “An expert system for fault section diagnosis of power systems using fuzzy relations”, IEEE Trans. Power Systems, vol.12, no.1, pp. 342-348, February 1997.

[2]K. Tomsovic, M. Tapper, and T. T. Ingvarsson, “A fuzzy information approach to integrating different transformer diagnostic methods,” IEEE Transactions on Power Delivery,vol.8, no.3, pp.1638-1643, July, 1993.

[3]李春明、王勇 , “基於小波神經網路的模擬電路故障診斷” , 中文核心期刊,第23卷,第1-1期,2007。

[4]Y. Zhang, X. Ding, Y. Liu, P. J. Griffin, “An artificial neural network to transformer fault diagnosis”, IEEE Transactions on Power Delivery, vol. 11, no. 4, pp.1836-1841, Oct. 1996.

[5]Rui-xin Li, Dong-feng Wang, Pu Han, Jun Zhang, “Fault diagnosis of turbo-generator base on fzbf neural network”, Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003.

[6] Xiaoning Wang, Deheng Zhu, Na Liu,“Application of expert system technology in fault diagnosis of steam turbine-generators”, Proceedings of IEEE Tencon’02, pp. 1869-1872, 2002.

[7]Dukarm and J. J., “Transformer oil diagnosis using fuzzy logic and neural network”, Canadian Conference on Electrical and Computer Engineering, vol.1, pp.329-332, 1993.

[8]王道平、張义忠,故障智能診斷系統的理論與方法,冶金工業出版社, 2001年。

[9]蘇木春、張孝德,機器學習之類神經網路、模糊系統以及基因演算法則,全華科技圖書股份有限公司, 1999年。

[10]王進德、蕭大全,類神經網路與模糊控制理論,全華科技圖書股份有限公司, 1994年。

[11]J.S Albus, “A new approach to manipulator control: the cerebeller Model articulation controller (CMAC) ” , Trans. ASME J. Dynam. Syst. Meas. And Contr , vol.97, pp.220-227, 1975.

[12]洪清寶,王孟輝,白能勝,俞國湳,“類小腦模式神經網路之空調系統故障診斷”,勤益學報,第20卷,第一期,第41-56頁,6月,2002。

[13]廖高進,“類小腦為基礎之神經網路應用於充氣電纜漏氣點障礙診斷”,碩士論文,逢甲大學電機工程所,台中,2006年6月。

[14]Jian Feng, Yi Liao Ji-quan Wang﹐“Fault diagnosis based on ANN in water circulation system ”﹐ Journal of Hunan Institute of Engineering, vol.15﹐no.1﹐ Mary,2005.

[15]Bi-Di Zhang, Ming Li, Gao Zheng, “The multiple-layer fuzzy model for turbo-generator vibration faulty diagnosis” , Turbine Technology, vol.45, no.5, Oct. 2003.

[16]C. P. Hung and Yi-Shin Lin, “Fault diagnosis of water circulation system using CMAC neural network approach”, Proceeding of the 1st conference on Intelligent Living Technology, pp.270-273, 2006.

[17]Mang-Hui Wang, “A novel extension method for transformer fault diagnosis”, IEEE Transactions on Power Delivery, vol. 18, no. 1, pp. 164-169, January, 2003.

[18]Surin Khomfoi and Leon M. Tolbert , “Fault diagnosis system for multilevel inverter using a neural network” , Power Electronics Specialists Conference of IEEE PESC’06, pp.1455-1460.


[19]T. Fukuda and T. Shibata, “Theory and applications of neural networks for industrial control system ” , IEEE Trans. on IE , vol.39, no.6, pp.472-489, 1992.

[20]Wen-Ji Peng and Xing-Qi Luo, “Research on vibration fault diagnosis of hydro-turbine generating unit based on wavelet neural network” , Journal of Hydroelectric Engineering , vol.26, no.1 , pp.123-128, Feb. , 2007.

[21]Cang Chen, Xing-Jun Fu, “Improved BP algorithm for fault diagnosis of stream-turbine generator unit”, Turbine Technology, vol.48, no.3, pp.227-229, June, 2006.

[22]Wu, T.-F., Tsai, P.-S., Chang, F.-R., Wang, L.-S., “Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation”, Control Theory and Applications, IEE Proceedings, vol.153, no.6, pp.647-657, 2006.

[23]Zhiqiang Li, Changliang Xia, ” Speed control of brushless DC motor based on CMAC and PID controller”, Proceedings of the 6th world congress on Intelliqent Control and Automation , pp.21-23, June, 2006.

[24]K.L. Butler, J.A Momoh, ” A neural net based approach for fault diagnosis in distribution networks”, Power Engineering Society Winter Meeting, 2000, IEEE volume 2, 23-27 Jan. 2000 Page(s):1275-1278 vol.2 Digital Object Identifier 10.1109/PESW.2000.850128.

[25]Shengwei Wang , Zhiming Jiang , “Valve fault detection and diagnosis based on CMAC neural networks”, Energy and Buildings, vol.36, no.6, pp.599-610, June, 2004.

[26]趙安民,“馬達故障診斷之模糊類神經網路”,碩士論文,中原大學機械工程所,桃園,2004。

[27]王文俊,認識Fuzzy,全華科技圖書股份有限公司,1997年。

[28]古頤榛,Visual C++ 教學範本,碁峰資訊股份有限公司,2000年。

[29]鑫智數位,Dreamweaver 8 & PHP 5資料庫網站實作,博碩文化股份有限公司, 2006年5月。

[30]普羅數位科技,網路概論-企業資料通訊,普林斯頓國際有限公司,2003年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔