|
1.Owen, G., J. Berry, and P. Bicknell, Hamartoma of the tongue. J Laryngol Otol, 1993. 107(4): p. 363-7. 2.Silverman, S., Jr., Precancerous lesions and oral cancer in the elderly. Clin Geriatr Med, 1992. 8(3): p. 529-41. 3.Zitsch, R.P., 3rd, Carcinoma of the lip. Otolaryngol Clin North Am, 1993. 26(2): p. 265-77. 4.Silverman, S., Jr., M. Gorsky, and F. Lozada, Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer, 1984. 53(3): p. 563-8. 5.Isobe, T. and T. Okuyama, The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem, 1978. 89(2): p. 379-88. 6.Isobe, T. and T. Okuyama, The amino-acid sequence of the alpha subunit in bovine brain S-100a protein. Eur J Biochem, 1981. 116(1): p. 79-86. 7.Fritz G., H.C., 3D structures of the calcium and zinc binding S100 proteins, in: Messerschmidt A, Bode W, Cygler W (Eds.),. Handbook of Metalloproteins, Wiley, Chichester, 2004: p. 529-540. 8.Marenholz, I., C.W. Heizmann, and G. Fritz, S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun, 2004. 322(4): p. 1111-22. 9.Santamaria-Kisiel, L., A.C. Rintala-Dempsey, and G.S. Shaw, Calcium-dependent and -independent interactions of the S100 protein family. Biochem J, 2006. 396(2): p. 201-14. 10.Schafer, B.W. and C.W. Heizmann, The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci, 1996. 21(4): p. 134-40. 11.Ridinger, K., et al., S100A13. Biochemical characterization and subcellular localization in different cell lines. J Biol Chem, 2000. 275(12): p. 8686-94. 12.Donato, R., Intracellular and extracellular roles of S100 proteins. Microsc Res Tech, 2003. 60(6): p. 540-51. 13.Lin, J., et al., Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. J Biol Chem, 2001. 276(37): p. 35037-41. 14.Grigorian, M., et al., Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. J Biol Chem, 2001. 276(25): p. 22699-708. 15.Kriajevska, M., et al., Metastasis-associated Mts1 (S100A4) protein modulates protein kinase C phosphorylation of the heavy chain of nonmuscle myosin. J Biol Chem, 1998. 273(16): p. 9852-6. 16.Eberhard, D.A., et al., Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci, 2001. 114(Pt 17): p. 3155-66. 17.Heierhorst, J., et al., Ca2+/S100 regulation of giant protein kinases. Nature, 1996. 380(6575): p. 636-9. 18.Millward, T.A., et al., Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins. Embo J, 1998. 17(20): p. 5913-22. 19.Rambotti, M.G., et al., S100B and S100A1 proteins in bovine retina:their calcium-dependent stimulation of a membrane-bound guanylate cyclase activity as investigated by ultracytochemistry. Neuroscience, 1999. 92(3): p. 1089-101. 20.Wu, T., et al., P11, a unique member of the S100 family of calcium-binding proteins, interacts with and inhibits the activity of the 85-kDa cytosolic phospholipase A2. J Biol Chem, 1997. 272(27): p. 17145-53. 21.Scotto, C., et al., Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Mol Cell Biol, 1998. 18(7): p. 4272-81. 22.Zimmer, D.B., et al., S100A1 regulates neurite organization, tubulin levels, and proliferation in PC12 cells. J Biol Chem, 1998. 273(8): p. 4705-11. 23.Lee, S.W., et al., Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci U S A, 1992. 89(6): p. 2504-8. 24.Sakaguchi, M., et al., Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts. J Cell Biol, 2000. 149(6): p. 1193-206. 25.Most, P., et al., S100A1: a regulator of myocardial contractility. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13889-94. 26.Donato, R., S-100 proteins. Cell Calcium, 1986. 7(3): p. 123-45. 27.Donato, R., S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol, 2001. 33(7): p. 637-68. 28.Komada, T., et al., Novel specific chemtactic receptor for S100L protein on guinea pig eosinophils. Biochem Biophys Res Commun, 1996. 220(3): p. 871-4. 29.Nagy, N., et al., S100A2, a putative tumor suppressor gene, regulates in vitro squamous cell carcinoma migration. Lab Invest, 2001. 81(4): p. 599-612. 30.Hofmann, M.A., et al., RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell, 1999. 97(7): p. 889-901. 31.Zimmer, D.B. and J.G. Dubuisson, Identification of an S100 target protein: glycogen phosphorylase. Cell Calcium, 1993. 14(4): p. 323-32. 32.Ruse, M., et al., S100A7, S100A10, and S100A11 are transglutaminase substrates. Biochemistry, 2001. 40(10): p. 3167-73. 33.Li, Z.H., et al., Mts1 regulates the assembly of nonmuscle myosin-IIA. Biochemistry, 2003. 42(48): p. 14258-66. 34.Ehlermann, P., et al., Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension. Biochim Biophys Acta, 2000. 1500(2): p. 249-55. 35.Remppis, A., et al., Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta, 1996. 1313(3): p. 253-7. 36.Li, Y., et al., S100 beta increases levels of beta-amyloid precursor protein and its encoding mRNA in rat neuronal cultures. J Neurochem, 1998. 71(4): p. 1421-8. 37.Sheng, J.G., R.E. Mrak, and W.S. Griffin, S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res, 1994. 39(4): p. 398-404. 38.Van Eldik, L.J. and W.S. Griffin, S100 beta expression in Alzheimer's disease: relation to neuropathology in brain regions. Biochim Biophys Acta, 1994. 1223(3): p. 398-403. 39.Ryckman, C., et al., Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol, 2003. 170(6): p. 3233-42. 40.Grigorian, M., et al., Effect of mts1 (S100A4) expression on the progression of human breast cancer cells. Int J Cancer, 1996. 67(6): p. 831-41. 41.Hsieh, H.L., et al., Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun, 2003. 307(2): p. 375-81. 42.Guerreiro Da Silva, I.D., et al., S100P calcium-binding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. Int J Oncol, 2000. 16(2): p. 231-40. 43.Wicki, R., et al., Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium, 1997. 22(4): p. 243-54. 44.Engelkamp, D., et al., Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E. Proc Natl Acad Sci U S A, 1993. 90(14): p. 6547-51. 45.Ilg, E.C., B.W. Schafer, and C.W. Heizmann, Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer, 1996. 68(3): p. 325-32. 46.Glenney, J.R., Jr., M.S. Kindy, and L. Zokas, Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol, 1989. 108(2): p. 569-78. 47.Lee, S.W., C. Tomasetto, and R. Sager, Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci U S A, 1991. 88(7): p. 2825-9. 48.Pedrocchi, M., et al., Expression of Ca(2+)-binding proteins of the S100 family in malignant human breast-cancer cell lines and biopsy samples. Int J Cancer, 1994. 57(5): p. 684-90. 49.Matsubara, D., et al., Differential expression of S100A2 and S100A4 in lung adenocarcinomas: clinicopathological significance, relationship to p53 and identification of their target genes. Cancer Sci, 2005. 96(12): p. 844-57. 50.Lauriola, L., et al., Prognostic significance of the Ca(2+) binding protein S100A2 in laryngeal squamous-cell carcinoma. Int J Cancer, 2000. 89(4): p. 345-9. 51.Nagy, N., et al., The Ca2+-binding S100A2 protein is differentially expressed in epithelial tissue of glandular or squamous origin. Histol Histopathol, 2002. 17(1): p. 123-30. 52.Heighway, J., et al., Expression profiling of primary non-small cell lung cancer for target identification. Oncogene, 2002. 21(50): p. 7749-63. 53.El-Rifai, W., et al., Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res, 2002. 62(23): p. 6823-6. 54.Kyriazanos, I.D., et al., Expression and prognostic significance of S100A2 protein in squamous cell carcinoma of the esophagus. Oncol Rep, 2002. 9(3): p. 503-10. 55.Santin, A.D., et al., Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer, 2004. 112(1): p. 14-25. 56.Xia, L., et al., CaN19 expression in benign and malignant hyperplasias of the skin and oral mucosa: evidence for a role in regenerative differentiation. Cancer Res, 1997. 57(14): p. 3055-62. 57.Tan, M., et al., Transcriptional activation of the human S100A2 promoter by wild-type p53. FEBS Lett, 1999. 445(2-3): p. 265-8. 58.Jost, C.A., M.C. Marin, and W.G. Kaelin, Jr., p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature, 1997. 389(6647): p. 191-4. 59.Kaghad, M., et al., Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell, 1997. 90(4): p. 809-19. 60.Lapi, E., et al., S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene, 2006. 25(26): p. 3628-37. 61.O., L.K.a.M., Über die enzymatische Umwandlung von Phosphoglyzerinsäure in Brenztraubensäure und Phosphorsäure (Enzymatic transformation of phosphoglyceric acid into pyruvic and phosphoric acid). Biochem. Z., 1934. 273: p. 60–72. 62.Phelps, J.C.a.M.E., Positron emission tomography scanning: current and future applications. Annu. Rev. Med, 2002. 53: p. 89-112. 63.Xu, R.H., et al., Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res, 2005. 65(2): p. 613-21. 64.Giallongo, A., et al., Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A, 1986. 83(18): p. 6741-5. 65.Moscato, S., et al., Surface expression of a glycolytic enzyme, alpha-enolase, recognized by autoantibodies in connective tissue disorders. Eur J Immunol, 2000. 30(12): p. 3575-84. 66.Aaronson, R.M., et al., Non-neuronal enolase is an endothelial hypoxic stress protein. J Biol Chem, 1995. 270(46): p. 27752-7. 67.Subramanian, A. and D.M. Miller, Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem, 2000. 275(8): p. 5958-65. 68.Wang, W., et al., Identification of alpha-enolase as a nuclear DNA-binding protein in the zona fasciculata but not the zona reticularis of the human adrenal cortex. J Endocrinol, 2005. 184(1): p. 85-94. 69.Ito, S., et al., Differential expression of the human alpha-enolase gene in oral epithelium and squamous cell carcinoma. Cancer Sci, 2007. 98(4): p. 499-505. 70.Feo, S., et al., ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett, 2000. 473(1): p. 47-52. 71.Altenberg, B. and K.O. Greulich, Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 2004. 84(6): p. 1014-20. 72.Pancholi, V., Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci, 2001. 58(7): p. 902-20. 73.Wu, W., et al., Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis, 2002. 19(4): p. 319-26. 74.Takashima, M., et al., Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics, 2005. 5(6): p. 1686-92. 75.Tsai, S.T., et al., S100A2, a potential marker for early recurrence in early-stage oral cancer. Oral Oncol, 2005. 41(4): p. 349-57. 76.Tsai, W.C., et al., Cyclooxygenase-2 is involved in S100A2-mediated tumor suppression in squamous cell carcinoma. Mol Cancer Res, 2006. 4(8): p. 539-47. 77.Oda, D. and E. Watson, Human oral epithelial cell culture I. Improved conditions for reproducible culture in serum-free medium. In Vitro Cell Dev Biol, 1990. 26(6): p. 589-95. 78.Lin, S.C., et al., Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med, 2004. 33(2): p. 79-86. 79.Werner, U. and T. Kissel, In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm Res, 1996. 13(7): p. 978-88. 80.Kamata, N., et al., Growth-inhibitory effects of epidermal growth factor and overexpression of its receptors on human squamous cell carcinomas in culture. Cancer Res, 1986. 46(4 Pt 1): p. 1648-53. 81.Albini, A., et al., A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res, 1987. 47(12): p. 3239-45. 82.Hirama, M., et al., Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett, 2003. 198(1): p. 107-17. 83.Gimona, M., et al., Ca2+-dependent interaction of S100A2 with muscle and nonmuscle tropomyosins. J Cell Sci, 1997. 110 ( Pt 5): p. 611-21.
|