跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔冠臣
研究生(外文):Kuan-chen Kung
論文名稱:鈦金屬陽極化表面處理之研究
論文名稱(外文):Characteristics of anodized titanium and its alloy
指導教授:李澤民李澤民引用關係
指導教授(外文):Tzer-Min Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:73
中文關鍵詞:細胞親和性微弧氧化處理孔洞表面結構
外文關鍵詞:biocompatibilityporous structuremicro-arc oxidation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用微弧氧化(micro-arc oxidation, MAO)處理,將鈦基材上分別披覆上一層氧化鈦鍍層與鈣磷鍍層,並在表面上產生不同大小的孔洞。目的是為了探討不同孔洞大小的表面結構對細胞活性之影響。X-ray繞射儀與EDS鑑定披覆鍍層的相組成及成分,FE-SEM觀察經MAO處理後的表面形態與厚度。結果發現鍍層分為氧化鈦鍍層與鈣磷鍍層兩種,在電壓300 V時,其孔洞大小約為0.1 μm∼1 μm之間;而在電壓400 V時,則約為0.5 μm∼2 μm之間。厚度隨著反應時間增加而增加,一分鐘增加約1 μm∼1.5 μm。親水性方面,經MAO處理後的試片,皆有非常良好的親水性。細胞相容性方面,將人類骨肉瘤細胞分別培養於基材上,探討其生物反應。利用細胞增生測試(Methylthiazoletetrazolium assay, MTT assay)細胞培養於試片1, 3, 5與10天的增生能力,細胞在B41(鈣磷鍍層,400 V, 1 min)的增生能力最好,生長最為迅速。並測試細胞分生能力(alkaline phosphate activity assay, ALP assay),B41試片相對於其他試片有較好的分生能力。FE-SEM觀察細胞培養0.5, 1, 3與12小時的細胞形態,發現細胞在B41試片基材的適應能力最好,表示B41試片有較好的細胞親和性。上述結果顯示孔洞大小的確會影響細胞的形態與反應,孔洞較大的表面確實有較好的細胞反應。
Ca-P (calcium phosphate) ceramics are bioactive materials. We used micro-arc oxidation (MAO) to manufacture TiO2 and Ca-P porous coatings on titanium substrates. The aim of this study was to investigate the properties of two coatings on the cell response. We used three instruments to investigate the coatings, including X-ray diffraction, FE-SEM and EDS. The results showed that we fabricated two different films with TiO2 and Ca-P. The Ca-P films were deposited about 1.7∼5.3 μm. The porous scale of Ca-P films were 0.1 μm∼1 μm at 300 V and 0.5 μm∼2 μm at 400 V. By sessile drop technique, all specimens showed hydrophilic property. In addition, coatings were evaluated with HOS (human osteosarcoma) which incubated on samples. Results in the cell proliferation, the B41 (Ca-P film, 400 V, 1 min) exhibited the best biocompatibility. Sample B41 exhibited more ALP activity than other samples. In the cell morphology, osteoblasts had the faster rate accreted on B41. In conclusion, it was showed that the big porous structure affects cell behaviors.
中文摘要 I
Abstract II
目 錄 IV
表 目 錄 VII
圖 目 錄 VIII
第一章、緒論 1
1-1、前言 1
1-2、研究動機 1
1-3、骨科生醫材料之分類 2
1-3-1、生物活性材料 3
1-3-2、生物可吸收材料 3
1-3-3、生物惰性材料 3
1-3-4、生物可忍受材料 4
1-4、披覆技術簡介 4
1-4-1、電漿熔射 4
1-4-2、離子濺鍍 4
1-4-3、生物礦仿化法 4
1-4-4、電化學沉積法 5
1-4-5、陽極化處理 5
1-5、研究目的 5
第二章、理論基礎 6
2-1、鈦與鈦合金基本性質 6
2-2、氧化鈦基本性質 6
2-3、磷酸鈣基本性質 8
2-4、陽極化處理與其應用 8
2-4-1、微弧氧化技術 9
第三章、實驗流程與研究方法 10
3-1、研究方法 10
3-1-1、實驗流程 10
3-1-2、實驗材料 10
3-2、試片前處理 10
3-3、微弧氧化陽極處理裝置 11
3-4、基本性質測試 11
3-5、接觸角測試 11
3-6、體外實驗 11
3-6-1、滅菌處理 12
3-6-2、細胞培養 12
3-6-3、細胞增生活性測試 12
3-6-4、細胞分生活性測試 13
3-6-5、細胞表面形態觀察 14
3-6-6、統計分析 15
第四章、結果與討論 16
4-1、基本性質探討 16
4-1-1、XRD分析 16
4-1-2、表面形態分析 17
4-1-3、橫截面分析 18
4-1-4、接觸角分析 19
4-2、體外實驗 19
4-2-1、細胞增生實驗分析 19
4-2-2、細胞分生實驗分析 20
4-2-3、細胞表面形態分析 21
第五章、結論 23
參考文獻 24
[1] J. Black, “Biological performance of materials – fundamentals of biocompatibility”, Marcel Dekker, Inc., New York, p.10-22 (1992)
[2] A. Cigada, M. Cabrini, and P. Pedeferri, “Increasing of the corrosion resistance of the Ti6Al4V alloy by high thickness anodic oxidation”, Journal of Materials Science: Materials in Medicine, 3, p.408-412 (1992)
[3] B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, “Biomaterials science – An introduction to materials in medicine”, Academic Press, Inc, New York, p.37-50 (1996)
[4] J.E. Lemons, “Hydroxyapatite coatings”, Clinical Orthopaedics and Related Research, 235, p.220-223 (1988)
[5] K.A. Thomas, J.F. Kay, S.D. Cook, and M. Jarcho, “The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials”, Journal of Biomedical Materials Research, 21, p.1395-1414 (1987)
[6] K. Hayashi, K. Uenoyama, N. Matsuguchi, and Y. Sugioka, “Quantitative analysis of in vivo tissue responses to titanium-oxide- and hydroxyapatite-coated titanium alloy”, Journal of Biomedical Materials Research, 25, p.515-523 (1991)
[7] D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, C.H. Fox, and H. Stich, “Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs”, Journal of Biomedical Materials Research, 25, p.889-902 (1991)
[8] J.A. Jansen, J.P.C.M. van de Waerden, J.G.C. Wolke, and K. de Groot, “Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants”, Journal of Biomedical Materials Research, 25, p.973-989 (1991)
[9] R. Garcia, and R.H. Doremus, “Electron microscopy of the bone-hydroxylapatite interface from a human dental implant”, Journal of Materials Science: Materials in Medicine, 3, p.154-156 (1992)
[10] R.G.T. Geesink, K. de Groot, and C.P.A. Klein, “Chemical implant fixation using hydroxyl-apatite coatings: The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates”, Clinical Orthopaedics and Related Research, 225, p.147-170 (1987)
[11] R.G.T. Geesink, K. de Groot, and C.P.A. Klein, “Bonding of bone to apatite-coated implants”, Journal of Bone and Joint Surgery, 70B, p.17-22 (1988)
[12] L.L. Hench, and E.C. Ethridge, “Biomaterials – an interfacial approach”, Academic Press, Inc., New York, p.18-21 (1982)
[13] S.A. Brown, L.J. Farnsworth, K. Merritt, and T.D. Crowe, “In vitro and in vivo metal ion release”, Journal of Biomedical Materials Research, 22, p.321-338 (1988)
[14] 陳瑞龍,“電化學沉積HA/TiO2生醫陶瓷鍍膜於Ti-6Al-4V合金製程參數之研究”,國立中興大學 材料工程研究所 碩士論文 (2004)
[15] H.S. Dobbs, and M.J. Minski, “Metal ion release after total hip replacement”, Biomaterials, 1, p.193-198 (1980)
[16] P.R. Bouchard, B. Jonathan, B.A. Albrecht, R.E. Kaderly, J.O. Galante, and B.U. Pauli, “Carcinogenicity of CoCrMo (F-75) implants in the rat”, Journal of Biomedical Materials Research, 32, p.37-44 (1996)
[17] J.L. Johnson, H.P. Jones, and K.V. Rajagopalan, “In vitro reconstitution of demolybdosulfite oxidase by a molybdenum cofactor from rat liver and other sources”, The Journal of biological chemistry, 252, p.4994-5003 (1977)
[18] R. Adell, U. Lekholm, B. Rockler, and P.I. Branemark, “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw”, International journal of oral surgery, p.387-461 (1981)
[19] B.M. Wroblewski, “15-21-year results of Charnely low-friction arthroplasty”, Clinical Orthopaedics and Related Research, 211, p.30-35 (1986)
[20] H.W. Kim, S.Y. Lee, C.J. Bae, Y.J. Noh, H.E. Kim, H.M. Kim, and J.S. Ko, “Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer”, Biomaterials, 24, p.3277-3284 (2003)
[21] I.B. Leonor, A. Ito, K. Onuma, N. Kanzaki, and R.L. Reis, “In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy”, Biomaterials, 24, p.579-585 (2003)
[22] 莊弘毅,氫氧基磷灰石之合成及其與氧化鋁複合材料之研究,國立成功大學 礦冶及材料科學研究所 碩士論文 (1992)
[23] L.L. Hench, “Bioceramics: from concept to clinic”, Journal of the American Ceramic Society, 74, p.1487-1510 (1991)
[24] A. Ravaglioli, and A. Krajewski, “Bioceramics, materials, properties, applications”, London, Chapman and Hall (1992)
[25] L.L. Hench, “Bioceramics and the origins of life”, in Oonishi, H. Ed. Bioceramics: Proceedings of the First International Bioceramic Symposium. Ishyakou EuroAmerica., p.5-11 (1990)
[26] A. Ravaglioli, and A. Krajewski, “Bioceramics and the human body”, Elsevier Applied Science, London (1992)
[27] P. Ducheyne, and J. Lemons, “Ceramics in Composites, Bioceramics: Material Characteristics Versus in vivo Behavior”, New York Academy of Sciences (1988)
[28] H. Ji, C.B. Ponton, and P.M. Marquis, “Microstructural characterization of hydroxyapatite coating on titanium”, Journal of Materials Science: Materials in Medicine, 3, p.283-287 (1992)
[29] B.C. Wang, E. Chang, C.Y. Yang, D. Tu, and C.H. Tsai, “Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coatings”, Surface and Coatings Technology, 58, p.107-117 (1993)
[30] R. McPherson, and N. Gane, “Structural characterization of plasma- sprayed hydroxylapatite coatings”, Journal of Materials Science: Materials in Medicine, 6, p.327-334 (1995)
[31] M. Yoshinari, Y. Ohtsuka, and T. Derand, “Thin hydroxyapatite coating produced by the ion beam dynamic mixing method”, Biomaterials, 15, p.529-535 (1994)
[32] P. Li, and K. de Groot, “Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo”, Journal of Biomedical Materials Research, 27, p.1495-1500 (1993)
[33] K. Cheng, W.J. Weng, H.B. Qu, P.Y. Du, G. Shen, G.R. Han, J. Yang, and J.M.F. Ferreira, “Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films”, Journal of Biomedical Materials Research Part B : Applied Biomaterials, 69B, p.33-37 (2004)
[34] M. Yousefpour, A. Afshar, X.D. Yang, X.D. Li, B.C. Yang, Y. Wu, J.Y. Chen, and X.D. Zhang, “Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium”, Journal of Electroanalytical Chemistry, 589, p.96-105 (2006)
[35] F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, and H. Schubert, “A simple biomimetic method for calcium phosphate coating”, Surface and Coatings Technology, 154, p.88-93 (2005)
[36] M. Shirkhanzadeh, “Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes”, Journal of Materials Science: Materials in Medicine, 6, p.90-93 (1995)
[37] I. Zhitomirsky, and L. Gal-or, “Electrophoretic deposition of hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 8, p.213-219 (1997)
[38] H. Monma, “Electrolytic depositions of calcium phosphates on substrate”, Journal of Materials Science, 29, p.949-953 (1994)
[39] C.C. Chen, J.H. Chen, C.G. Chao, and W.C. Say, “Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing”, Journal of Materials Science, 40, p.4053-4059 (2005)
[40] X. Quan, S.G. Yang, X.L. Ruan, and H.M. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode”, Environmental Science and Technology, 39, p.3770-3775 (2005)
[41] W.J. Lee, M. Alhoshan, and W.H. Smyrl, “Titanium dioxide nanotube arrays fabricated by anodizing processes”, Journal of the Electrochemical Society, 153, p.B499-B505 (2006)
[42] X. Nie, A. Leyland, and A. Matthews, “Deposition of layered bioceramic hydroxyapatite-TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis”, Surface and Coatings Technology, 125, p.407-414 (2000)
[43] Y. Tanaka, “Titanium-oxide interface structures formed by degassing and anodization processes”, Journal of Materials Science, 40, p.3081-3090 (2005)
[44] D. Krupa, J. Baszkiewicz, J.A. Kozubowski, J. Mizera, A. Barcz, J.W. Sobczak, A. Bilinski, and B. Rajchel, “Corrosion resistance and bioactivity of titanium after surface treatment by three different methods: ion implantation, alkaline treatment and anodic oxidation”, Analytical and Bioanalytical Chemistry, 381, p.617-625 (2005)
[45] 賴耿陽,金屬鈦-理論與應用,復漢出版社 (1990)
[46] B.F. Kavanagh, D.M. Ilstrup, and R.H. Fitzgerald, “Revision total hip arthroplasty”, Journal of Bone and Joint Surgery, 67A, p.517-526 (1985)
[47] “Proceedings: 1986 International Conference on Titanium Products and Applications”, Titanium Development Association, Dayton, p.722 (1987)
[48] P. Ducheyne and K.E. Healy, “Surface spectroscopy of calcium phosphate ceramic and titanium implant materials”, Surface characterization of biomaterials, edited by B. D. Ranter, p.175-192 (1988)
[49] 羅宗男,電漿熔射PSZ介層對牙科瓷與純鈦介面強度之效應研究,國立成功大學 材料科學及工程研究所 博士論文 (2005)
[50] 劉佳玫,奈米二氧化鈦電泳沉積及其性質,國立成功大學 材料科學及工程研究所 碩士論文 (2004)
[51] J.-B. Park, “Biomaterials Science and Engineering”, Plenum Press, New York and London (1985)
[52] P. Griss, and G. Heimke, “Five years experience with ceramic-metal- composite hip endoprostheses”, Archives of Orthopaedic and Trauma Surgery, 98, p.157-164 (1981)
[53] J. Li, “Behaviour of titanium and titania-based ceramics in vitro and in vivo”, Biomaterials, 14, p.229-232 (1993)
[54] T. Jinno, S. K. Kirk, S. Morita, and V.M. Goldberg, “Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model”, The Journal of Arthroplasty, 19, p.102-109 (2004)
[55] 陳俊雄,以電化學沉積法於鈦基板表面被覆磷酸鈣之研究,國立成功大學 材料科學及工程研究所 碩士論文 (1996)
[56] T.S.B. Narasaraju, and D.E. Phebe, “Some physico-chemical aspects of hydroxylapatite”, Journal of Materials Science, 31, p.1-21 (1996)
[57] R.I. Martin, and P.W. Brown, “Formation of hydroxyapatite in serum”, Journal of Materials Science: Materials in Medicine, 5, p.96-102 (1994)
[58] L.M. Boulton, P.J. Gregson, M. Tuke, and T. Baldwin, “Adhesively bonded hydroxyapatite coating”, Materials Letters, 12, p.1-6 (1991)
[59] 李澤民,電漿熔射生醫玻璃塗層與氫氧基磷灰石塗層特性研究,國立成功大學 材料科學研究所 碩士論文 (1993)
[60] J.L. Zhao, X.H. Wang, R.Z. Chen, and L.T. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Communications, 134, p.705-710 (2005)
[61] Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, and C.J. Lin, “Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate”, Applied Surface Science, 252, p.1101-1106 (2005)
[62] H.M. Kim, B.C. Yang, M. Uchida, X.D. Zhang, and T. Kokubo, “Preparation of bioactive titanium metal via anodic oxidation treatment”, Biomaterials, 25, p.1003-1010 (2004)
[63] E. Sandrini, C. Giordano, V. Busini, E. Signorelli, and A. Cigada, “Apatite formation and cellular response of a novel bioactive titanium”, Journal of Materials Science: Materials in Medicine, 18, p.1225-1237 (2007)
[64] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, and J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials, 25, p.2867-2875 (2004)
[65] J.Z. Chen, Y.L. Shi, L. Wang, F.Y. Yan, and F.Q. Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation”, Materials Letters, 60, p.2538-2543 (2006)
[66] F.Y. Jin, H.H. Tong, L.R. Shen, K. Wang, and Paul K. Chu, “Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization”, Materials Chemistry and Physics, 100, p.31-33 (2006)
[67] J.P. Schreckenbach, G. Marx, F. Schlottig, M. Textor, and N.D. Spencer, “Characterization of anodic spark-converted titanium surfaces for biomedical applications”, Journal of Materials Science: Materials in Medicine, 10, p.453-457 (1999)
[68] Z.W. Zhao, and S.M. Wen, “Direct preparation of CaTi4(PO4)6 coatings on the surface of titanium substrate by micro arc oxidation”, Journal of Materials Science: Materials in Medicine, online first (2007)
[69] P. Huang, K.W. Xu, and Y. Han, “Formation mechanism of biomedical apatite coatings on porous titania layer”, Journal of Materials Science: Materials in Medicine, 18, p.457-463 (2007)
[70] V. Voort, and F. George, “Metallography principles and practice”, McGraw-Hill Book Company, p.692-696 (1984)
[71] J.C. Lin, and W.H. Chuang, “Synthesis, surface characterization and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality”, Journal of Biomedical Materials Research Part A, 51, p.413-423 (2000)
[72] T.G. van Kooten, J.M. Schakenraad, H.C. van der Mei, and H.J. Busscher, “Influence of substratum wettability on the strength of adhesion of human fibroblasts”, Biomaterials, 13, p.897-904 (1992)
[73] 謝明哲,鈦合金奈米級表面粗糙差異對表面性質及細胞初期生長的影響,國立成功大學 製造工程研究所 碩士論文 (2006)
[74] J.F. Li, L. Wan, and J.Y. Feng, “Study on the preparation of titania films for photocatalytic application by micro-arc oxidation”, Solar Energy Materials & Solar Cells, 90, p.2449-2455 (2006)
[75] X.L. Zhu, K.H. Kim, and Y.S. Jeong, “Anodic oxide films containing Ca and P of titanium biomaterial”, Biomaterials, 22, p.2199-2206 (2001)
[76] W.H. Song, Y.K. Jun, Y. Han, and S.H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania”, Biomaterials, 25, p.3341-3349 (2004)
[77] Y. Han, S.H. Hong, and K.W. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation”, Surface and Coatings Technology, 168, p.249-258 (2003)
[78] F.A. Akin, H. Zreiqat, S. Jordan, M.B.J. Wijesundara, and L. Hanley, “Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants”, Journal of Biomedical Materials Research Part A, 57, p.588-596 (2001)
[79] J.H. Lee, S.E. Kim, Y.J. Kim, C.S. Chi, and H.J. Oh, “Effects of microstructure of anodic titania on the formation of bioactive compounds”, Materials Chemistry and Physics, 98, p.39-43 (2006)
[80] J. Lawrence, L. Hao, and H.R. Chew, “On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy”, Surface and Coatings Technology, 200, p.5581-5589 (2006)
[81] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K. W. Xu, and H. F. Hildebrand, “Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior”, Journal of Biomedical Materials Research Part A, 68A, p.383-391 (2004)
[82] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses”, Biomaterials, 25, p.4087-4103 (2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 85. 劉銘龍,1997,〈韓國的垃圾革命-從量徵收制度的成功借鏡〉,環耕(6),頁71-73
2. 81. 鄭益明,2000,〈垃圾管理V.S垃圾處理〉,看守臺灣(2:1),頁67~68
3. 78. 熊秉元,1991,〈「使用者付費」觀念的探討〉,財稅研究(23:3), 頁99-106
4. 76. 熊秉元,1996,〈「使用者付費原則」的理論與實際-台灣的個案分析〉,財稅研究(28:1),頁97-112
5. 75. 熊秉元,1997,〈「專款專用」與個人--由子民社會到公民社會的變遷〉,財稅研究(29:1),頁8-25
6. 69. 張則堯,1991,〈受益者付費原則與規費徵收〉,保險專刊(24),頁 199-202
7. 68. 張則堯,1994,〈環境污染者付費之要諦--外部成本的內部化、亦即社會責任的公平負擔〉,保險專刊(36),頁201-203
8. 67. 張則堯,1999,〈公共財淺釋〉,華信金融季刊(6),頁 147-151
9. 55. 陳鴻達,2001,〈綠色租稅改革-歐美環境稅的推動現況〉,財稅研究(33:4),頁161-191
10. 39. 柯淑婉,1994,〈日本資源回收成功都市的分析〉,環境教育季刊(23),頁21-30
11. 37. 洪正中,2000,〈台北市的垃圾革命-垃圾清理費隨袋徵收〉,環境教育季刊(43),頁1-7
12. 27. 沈世宏、盧世昌,2001,〈台北市垃圾費隨袋徵收制度實施後之效益及配套措施〉,環保月刊(1:2),頁148-157
13. 16. 朱澤民,2001,〈各種垃圾收費制度之比較分析〉,環保月刊(1:2),頁86-101
14. 91. 蕭立國、阮國棟,1995,〈應用經濟誘因於毒性化學物質之管理〉,工業污染防治(53),頁183-198
15. 92. 盧世昌,1998,〈淺談垃圾費隨量徵收〉,環境教育季刊(36),頁53-57