[1] J. Black, “Biological performance of materials – fundamentals of biocompatibility”, Marcel Dekker, Inc., New York, p.10-22 (1992)
[2] A. Cigada, M. Cabrini, and P. Pedeferri, “Increasing of the corrosion resistance of the Ti6Al4V alloy by high thickness anodic oxidation”, Journal of Materials Science: Materials in Medicine, 3, p.408-412 (1992)
[3] B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, “Biomaterials science – An introduction to materials in medicine”, Academic Press, Inc, New York, p.37-50 (1996)
[4] J.E. Lemons, “Hydroxyapatite coatings”, Clinical Orthopaedics and Related Research, 235, p.220-223 (1988)
[5] K.A. Thomas, J.F. Kay, S.D. Cook, and M. Jarcho, “The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials”, Journal of Biomedical Materials Research, 21, p.1395-1414 (1987)
[6] K. Hayashi, K. Uenoyama, N. Matsuguchi, and Y. Sugioka, “Quantitative analysis of in vivo tissue responses to titanium-oxide- and hydroxyapatite-coated titanium alloy”, Journal of Biomedical Materials Research, 25, p.515-523 (1991)
[7] D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, C.H. Fox, and H. Stich, “Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs”, Journal of Biomedical Materials Research, 25, p.889-902 (1991)
[8] J.A. Jansen, J.P.C.M. van de Waerden, J.G.C. Wolke, and K. de Groot, “Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants”, Journal of Biomedical Materials Research, 25, p.973-989 (1991)
[9] R. Garcia, and R.H. Doremus, “Electron microscopy of the bone-hydroxylapatite interface from a human dental implant”, Journal of Materials Science: Materials in Medicine, 3, p.154-156 (1992)
[10] R.G.T. Geesink, K. de Groot, and C.P.A. Klein, “Chemical implant fixation using hydroxyl-apatite coatings: The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates”, Clinical Orthopaedics and Related Research, 225, p.147-170 (1987)
[11] R.G.T. Geesink, K. de Groot, and C.P.A. Klein, “Bonding of bone to apatite-coated implants”, Journal of Bone and Joint Surgery, 70B, p.17-22 (1988)
[12] L.L. Hench, and E.C. Ethridge, “Biomaterials – an interfacial approach”, Academic Press, Inc., New York, p.18-21 (1982)
[13] S.A. Brown, L.J. Farnsworth, K. Merritt, and T.D. Crowe, “In vitro and in vivo metal ion release”, Journal of Biomedical Materials Research, 22, p.321-338 (1988)
[14] 陳瑞龍,“電化學沉積HA/TiO2生醫陶瓷鍍膜於Ti-6Al-4V合金製程參數之研究”,國立中興大學 材料工程研究所 碩士論文 (2004)[15] H.S. Dobbs, and M.J. Minski, “Metal ion release after total hip replacement”, Biomaterials, 1, p.193-198 (1980)
[16] P.R. Bouchard, B. Jonathan, B.A. Albrecht, R.E. Kaderly, J.O. Galante, and B.U. Pauli, “Carcinogenicity of CoCrMo (F-75) implants in the rat”, Journal of Biomedical Materials Research, 32, p.37-44 (1996)
[17] J.L. Johnson, H.P. Jones, and K.V. Rajagopalan, “In vitro reconstitution of demolybdosulfite oxidase by a molybdenum cofactor from rat liver and other sources”, The Journal of biological chemistry, 252, p.4994-5003 (1977)
[18] R. Adell, U. Lekholm, B. Rockler, and P.I. Branemark, “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw”, International journal of oral surgery, p.387-461 (1981)
[19] B.M. Wroblewski, “15-21-year results of Charnely low-friction arthroplasty”, Clinical Orthopaedics and Related Research, 211, p.30-35 (1986)
[20] H.W. Kim, S.Y. Lee, C.J. Bae, Y.J. Noh, H.E. Kim, H.M. Kim, and J.S. Ko, “Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer”, Biomaterials, 24, p.3277-3284 (2003)
[21] I.B. Leonor, A. Ito, K. Onuma, N. Kanzaki, and R.L. Reis, “In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy”, Biomaterials, 24, p.579-585 (2003)
[22] 莊弘毅,氫氧基磷灰石之合成及其與氧化鋁複合材料之研究,國立成功大學 礦冶及材料科學研究所 碩士論文 (1992)
[23] L.L. Hench, “Bioceramics: from concept to clinic”, Journal of the American Ceramic Society, 74, p.1487-1510 (1991)
[24] A. Ravaglioli, and A. Krajewski, “Bioceramics, materials, properties, applications”, London, Chapman and Hall (1992)
[25] L.L. Hench, “Bioceramics and the origins of life”, in Oonishi, H. Ed. Bioceramics: Proceedings of the First International Bioceramic Symposium. Ishyakou EuroAmerica., p.5-11 (1990)
[26] A. Ravaglioli, and A. Krajewski, “Bioceramics and the human body”, Elsevier Applied Science, London (1992)
[27] P. Ducheyne, and J. Lemons, “Ceramics in Composites, Bioceramics: Material Characteristics Versus in vivo Behavior”, New York Academy of Sciences (1988)
[28] H. Ji, C.B. Ponton, and P.M. Marquis, “Microstructural characterization of hydroxyapatite coating on titanium”, Journal of Materials Science: Materials in Medicine, 3, p.283-287 (1992)
[29] B.C. Wang, E. Chang, C.Y. Yang, D. Tu, and C.H. Tsai, “Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coatings”, Surface and Coatings Technology, 58, p.107-117 (1993)
[30] R. McPherson, and N. Gane, “Structural characterization of plasma- sprayed hydroxylapatite coatings”, Journal of Materials Science: Materials in Medicine, 6, p.327-334 (1995)
[31] M. Yoshinari, Y. Ohtsuka, and T. Derand, “Thin hydroxyapatite coating produced by the ion beam dynamic mixing method”, Biomaterials, 15, p.529-535 (1994)
[32] P. Li, and K. de Groot, “Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo”, Journal of Biomedical Materials Research, 27, p.1495-1500 (1993)
[33] K. Cheng, W.J. Weng, H.B. Qu, P.Y. Du, G. Shen, G.R. Han, J. Yang, and J.M.F. Ferreira, “Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films”, Journal of Biomedical Materials Research Part B : Applied Biomaterials, 69B, p.33-37 (2004)
[34] M. Yousefpour, A. Afshar, X.D. Yang, X.D. Li, B.C. Yang, Y. Wu, J.Y. Chen, and X.D. Zhang, “Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium”, Journal of Electroanalytical Chemistry, 589, p.96-105 (2006)
[35] F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, and H. Schubert, “A simple biomimetic method for calcium phosphate coating”, Surface and Coatings Technology, 154, p.88-93 (2005)
[36] M. Shirkhanzadeh, “Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes”, Journal of Materials Science: Materials in Medicine, 6, p.90-93 (1995)
[37] I. Zhitomirsky, and L. Gal-or, “Electrophoretic deposition of hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 8, p.213-219 (1997)
[38] H. Monma, “Electrolytic depositions of calcium phosphates on substrate”, Journal of Materials Science, 29, p.949-953 (1994)
[39] C.C. Chen, J.H. Chen, C.G. Chao, and W.C. Say, “Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing”, Journal of Materials Science, 40, p.4053-4059 (2005)
[40] X. Quan, S.G. Yang, X.L. Ruan, and H.M. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode”, Environmental Science and Technology, 39, p.3770-3775 (2005)
[41] W.J. Lee, M. Alhoshan, and W.H. Smyrl, “Titanium dioxide nanotube arrays fabricated by anodizing processes”, Journal of the Electrochemical Society, 153, p.B499-B505 (2006)
[42] X. Nie, A. Leyland, and A. Matthews, “Deposition of layered bioceramic hydroxyapatite-TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis”, Surface and Coatings Technology, 125, p.407-414 (2000)
[43] Y. Tanaka, “Titanium-oxide interface structures formed by degassing and anodization processes”, Journal of Materials Science, 40, p.3081-3090 (2005)
[44] D. Krupa, J. Baszkiewicz, J.A. Kozubowski, J. Mizera, A. Barcz, J.W. Sobczak, A. Bilinski, and B. Rajchel, “Corrosion resistance and bioactivity of titanium after surface treatment by three different methods: ion implantation, alkaline treatment and anodic oxidation”, Analytical and Bioanalytical Chemistry, 381, p.617-625 (2005)
[45] 賴耿陽,金屬鈦-理論與應用,復漢出版社 (1990)
[46] B.F. Kavanagh, D.M. Ilstrup, and R.H. Fitzgerald, “Revision total hip arthroplasty”, Journal of Bone and Joint Surgery, 67A, p.517-526 (1985)
[47] “Proceedings: 1986 International Conference on Titanium Products and Applications”, Titanium Development Association, Dayton, p.722 (1987)
[48] P. Ducheyne and K.E. Healy, “Surface spectroscopy of calcium phosphate ceramic and titanium implant materials”, Surface characterization of biomaterials, edited by B. D. Ranter, p.175-192 (1988)
[49] 羅宗男,電漿熔射PSZ介層對牙科瓷與純鈦介面強度之效應研究,國立成功大學 材料科學及工程研究所 博士論文 (2005)[50] 劉佳玫,奈米二氧化鈦電泳沉積及其性質,國立成功大學 材料科學及工程研究所 碩士論文 (2004)[51] J.-B. Park, “Biomaterials Science and Engineering”, Plenum Press, New York and London (1985)
[52] P. Griss, and G. Heimke, “Five years experience with ceramic-metal- composite hip endoprostheses”, Archives of Orthopaedic and Trauma Surgery, 98, p.157-164 (1981)
[53] J. Li, “Behaviour of titanium and titania-based ceramics in vitro and in vivo”, Biomaterials, 14, p.229-232 (1993)
[54] T. Jinno, S. K. Kirk, S. Morita, and V.M. Goldberg, “Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model”, The Journal of Arthroplasty, 19, p.102-109 (2004)
[55] 陳俊雄,以電化學沉積法於鈦基板表面被覆磷酸鈣之研究,國立成功大學 材料科學及工程研究所 碩士論文 (1996)[56] T.S.B. Narasaraju, and D.E. Phebe, “Some physico-chemical aspects of hydroxylapatite”, Journal of Materials Science, 31, p.1-21 (1996)
[57] R.I. Martin, and P.W. Brown, “Formation of hydroxyapatite in serum”, Journal of Materials Science: Materials in Medicine, 5, p.96-102 (1994)
[58] L.M. Boulton, P.J. Gregson, M. Tuke, and T. Baldwin, “Adhesively bonded hydroxyapatite coating”, Materials Letters, 12, p.1-6 (1991)
[59] 李澤民,電漿熔射生醫玻璃塗層與氫氧基磷灰石塗層特性研究,國立成功大學 材料科學研究所 碩士論文 (1993)[60] J.L. Zhao, X.H. Wang, R.Z. Chen, and L.T. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Communications, 134, p.705-710 (2005)
[61] Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, and C.J. Lin, “Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate”, Applied Surface Science, 252, p.1101-1106 (2005)
[62] H.M. Kim, B.C. Yang, M. Uchida, X.D. Zhang, and T. Kokubo, “Preparation of bioactive titanium metal via anodic oxidation treatment”, Biomaterials, 25, p.1003-1010 (2004)
[63] E. Sandrini, C. Giordano, V. Busini, E. Signorelli, and A. Cigada, “Apatite formation and cellular response of a novel bioactive titanium”, Journal of Materials Science: Materials in Medicine, 18, p.1225-1237 (2007)
[64] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, and J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials, 25, p.2867-2875 (2004)
[65] J.Z. Chen, Y.L. Shi, L. Wang, F.Y. Yan, and F.Q. Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation”, Materials Letters, 60, p.2538-2543 (2006)
[66] F.Y. Jin, H.H. Tong, L.R. Shen, K. Wang, and Paul K. Chu, “Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization”, Materials Chemistry and Physics, 100, p.31-33 (2006)
[67] J.P. Schreckenbach, G. Marx, F. Schlottig, M. Textor, and N.D. Spencer, “Characterization of anodic spark-converted titanium surfaces for biomedical applications”, Journal of Materials Science: Materials in Medicine, 10, p.453-457 (1999)
[68] Z.W. Zhao, and S.M. Wen, “Direct preparation of CaTi4(PO4)6 coatings on the surface of titanium substrate by micro arc oxidation”, Journal of Materials Science: Materials in Medicine, online first (2007)
[69] P. Huang, K.W. Xu, and Y. Han, “Formation mechanism of biomedical apatite coatings on porous titania layer”, Journal of Materials Science: Materials in Medicine, 18, p.457-463 (2007)
[70] V. Voort, and F. George, “Metallography principles and practice”, McGraw-Hill Book Company, p.692-696 (1984)
[71] J.C. Lin, and W.H. Chuang, “Synthesis, surface characterization and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality”, Journal of Biomedical Materials Research Part A, 51, p.413-423 (2000)
[72] T.G. van Kooten, J.M. Schakenraad, H.C. van der Mei, and H.J. Busscher, “Influence of substratum wettability on the strength of adhesion of human fibroblasts”, Biomaterials, 13, p.897-904 (1992)
[73] 謝明哲,鈦合金奈米級表面粗糙差異對表面性質及細胞初期生長的影響,國立成功大學 製造工程研究所 碩士論文 (2006)[74] J.F. Li, L. Wan, and J.Y. Feng, “Study on the preparation of titania films for photocatalytic application by micro-arc oxidation”, Solar Energy Materials & Solar Cells, 90, p.2449-2455 (2006)
[75] X.L. Zhu, K.H. Kim, and Y.S. Jeong, “Anodic oxide films containing Ca and P of titanium biomaterial”, Biomaterials, 22, p.2199-2206 (2001)
[76] W.H. Song, Y.K. Jun, Y. Han, and S.H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania”, Biomaterials, 25, p.3341-3349 (2004)
[77] Y. Han, S.H. Hong, and K.W. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation”, Surface and Coatings Technology, 168, p.249-258 (2003)
[78] F.A. Akin, H. Zreiqat, S. Jordan, M.B.J. Wijesundara, and L. Hanley, “Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants”, Journal of Biomedical Materials Research Part A, 57, p.588-596 (2001)
[79] J.H. Lee, S.E. Kim, Y.J. Kim, C.S. Chi, and H.J. Oh, “Effects of microstructure of anodic titania on the formation of bioactive compounds”, Materials Chemistry and Physics, 98, p.39-43 (2006)
[80] J. Lawrence, L. Hao, and H.R. Chew, “On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy”, Surface and Coatings Technology, 200, p.5581-5589 (2006)
[81] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K. W. Xu, and H. F. Hildebrand, “Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior”, Journal of Biomedical Materials Research Part A, 68A, p.383-391 (2004)
[82] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses”, Biomaterials, 25, p.4087-4103 (2004)