跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 14:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊美怡
研究生(外文):Mei-Yi Yang
論文名稱:含雙缺陷蜂巢材料於多軸應力作用下之力學行為
論文名稱(外文):Mechanical Behavior of Honeycombs with Dual Imperfections under Multiaxial Loads
指導教授:黃忠信黃忠信引用關係
指導教授(外文):Jong-Shin Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:151
中文關鍵詞:多軸應力缺陷蜂巢材料
外文關鍵詞:stiffnessstrengthmultiaxial loadsimperfectionshoneycombs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對具曲度及變剖面微觀構件之雙缺陷蜂巢材料進行廣泛性之研究並探討此二類微構件缺陷單一存在或同時存在時對蜂巢材料機械性質之影響。首先利用巨觀參數相對密度及微觀參數 及 定義最小重複單元體之理論模型,並以樑之變形理論分析蜂巢材料於平面上之機械性質,包括楊氏模數、柏松比、彈性挫曲強度、塑性降伏強度、脆性破裂強度及雙軸應力作用下之破壞包絡面。並利用有限元素套裝軟體ABAQUS建立具曲度及變剖面微觀構件蜂巢材料之數值分析模型,理論與數值結果皆顯示其力學性質受其幾何形狀參數所影響,並發現當蜂巢材料具曲度及變剖面微構件雙缺陷時,其正規化強度為蜂巢材料具其中一種單一缺陷所求得正規化強度之相乘值。當蜂巢材料承受平面上雙軸應力作用時,其可能破壞機制包括:彈性挫曲、塑性降伏及脆性破裂等,同時考慮上述破壞機制並利用本文所獲得之結果,可進一步求得具曲度及變剖面微觀構件蜂巢材料承受雙軸應力作用時之破壞包絡面,以利工程實際運用所需。
Aim of this study is to investigate the effects of the microstructural imperfections of solid distribution in cell edges and curved cell edges within honeycombs on their mechanical behavior when each single imperfection or dual imperfections are taken into account. The analytical expressions for describing the elastic moduli, plastic collapse strength, brittle crushing strength, elastic buckling strength, yield surfaces and brittle-fracture surfaces of regular hexagonal honeycombs with imperfections were derived from a model of curved cell edges with Plateau borders. Finite element numerical analyses on the mechanical properties of hexagonal honeycombs with dual imperfections were also performed and then compared to the proposed theoretical modeling. Both analytical and numerical results indicate that the effects of dual imperfections are more significant as compared to those of each single imperfection. Moreover, the normalized stiffness and strengths of a hexagonal honeycomb with dual imperfections are found to be approximately equal to the products of those with each single imperfection. In other words, the stiffness and strengths of a hexagonal honeycomb with dual imperfections can be directly estimated from those with each single imperfection. Furthermore, the failure surfaces of honeycombs with dual imperfections are developed; the effects of solid distribution in cell edges and curvature of cell edges on the mechanical properties of honeycombs are also evaluated.
Abstract…………………………………………………………………………………………I
Acknowledgements……………………………………………………………………………III
Table of Contents……………………………………………………………………………IV
List of Tables…………………………………………………………………………………VI
List of Figures………………………………………………………………………………VII
Chapter 1 Introduction………………………………………………………………………1
1.1 Literature Review…………………………………………………………………2
1.2 Scope of Thesis………………………………………………………………………………6
Chapter 2 Cell Geometry……………………………………………………………………………8
2.1 Honeycombs with Single Imperfection…………………………………………8
2.1.1 Honeycombs with Plateau Borders………………………………………………8
2.1.2 Honeycombs with Circular Cell Edges…………………………………………10
2.2 Honeycombs with Dual Imperfections……………………………………………11
Chapter 3 Analysis for Honeycombs with Single Imperfection………………………23
3.1 The In-plane Properties of Honeycombs with Single Imperfection:
Uniaxial Loading…………………………………………………………………24
3.1.1 Honeycombs with Plateau Borders ……………………………………………24
3.1.2 Honeycombs with Circular Cell edges…………………………………………26
3.2 The In-plane Properties of Honeycombs with Single Imperfection:
Biaxial Loading……………………………………………………………………27
3.2.1 Honeycombs with Plateau Borders ……………………………………………27
(a) Yield Surface………………………………………………………………27
(b) Brittle-Fracture Surface…………………………………………………28
3.2.2 Honeycombs with Circular Cell edges………………………………………34
(a) Yield Surface………………………………………………………………34
(b) Brittle-Fracture Surface…………………………………………………37
Chapter 4 Analysis for Honeycombs with Dual Imperfections………………………44
4.1 The In-plane Properties of Honeycombs with Dual Imperfections:
Uniaxial Loading……………………………………………………………………45
4.1.1 Elastic Moduli……………………………………………………………………45
4.1.2 Plastic Collapse Strength………………………………………………………48
4.1.3 Brittle Crushing Strength………………………………………………………50
4.1.4 Elastic Buckling Strength………………………………………………………52
4.2 The In-plane Properties of Honeycombs with Dual Imperfections:
Biaxial Loading……………………………………………………………………56
4.2.1 Yield Surface………………………………………………………………………58
4.2.2 Brittle-Fracture Surface………………………………………………………60
Chapter 5 Effects of Imperfections on Stiffness and Strength……………………69
5.1 Numerical Analysis………………………………………………………………69
5.2 Effect of ………………………………………………………………………71
5.3 Effect of …………………………………………………………………………75
5.4 Effect of both and ……………………………………………………………77
5.5 Correlation between dual imperfections and single imperfection………80
Chapter 6 Effects of Imperfections on Failure Surfaces……………………………113
6.1 Numerical Analysis for Biaxial Compressions………………………………113
6.2 Failure Surfaces for Ductile Honeycombs……………………………………116
6.3 Failure Surfaces for Brittle Honeycombs……………………………………118
Chapter 7 Conclusions and Suggestions…………………………………………………140
7.1 Conclusions…………………………………………………………………………140
7.2 Suggestions…………………………………………………………………………143
Reference………………………………………………………………………………………145
[1] Gibson LJ, Ashby MF. Cellular Solids: Structures & Properties. 2nd ed. Cambridge UK: Cambridge University Press; 1997.
[2] Ashby MF. The mechanical properties of cellular solids. Metall Trans A 1983; 14A: 1755-69.
[3] Weaire D, Fortes MA. Stress and strain in liquid and solid foams. Adv Phys 1994; 43: 685-738.
[4] Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG. The topological design of multifunctional cellular metals. Prog Mater Sci 2001; 46: 309-27.
[5] Becker W. Closed-form analysis of the thickness effect of regular honeycomb core material. Composite Structures 2000; 48: 67-70.
[6] Chung J, Waas AM. The elastic properties of circular cell and elliptical cell honeycombs. Acta Mech 2000; 144: 29-42.
[7] Chuang CH. Mechanical properties of honeycombs with Plateau borders, Ph.D. dissertation, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, 2002.
[8] Gibson LJ, Ashby MF, Schajer GS, Robertson CI. The mechanics of two-dimensional cellular materials. Proc R Soc Lond A 1982; 382: 25-42.
[9] Papka SD, Kyriakides S. In-plane ompressive response and crushing of honeycomb. J Mech Phys Solids 1994; 42: 1499-532.
[10] Warren WE, Kraynik AM. Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials. Mech Mater 1987; 6 : 27-37.
[11] Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two-dimensional foams. J Mech Phy Solids 1999; 47: 2235-72.
[12] Kim HS, Al-Hassani STS. A morphological elastic model of general hexagonal columnar structures. Int J Mech Sci 2001; 43:1027-60.
[13] Kim HS, Al-Hassani STS. Plastic collapse of cellular structures comprised of doubly tapered struts. Int J Mech Sci 2001; 43: 2453-78.
[14] Kim HS, Al-Hassani STS. The effect of doubly tapered strut morphology on the plastic yield surface of cellular materials. Int J Mech Sci 2002; 44: 1559-81.
[15] Simone AE, Gibson LJ. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 1998; 46: 2139-50.
[16] Chuang CH, Huang JS. Elastic moduli and plastic collapse strength of hexagonal honeycomb with Plateau borders. Int J Mech Sci 2002; 44: 1827-44.
[17] Chuang CH, Huang JS. Effects of solid distribution on the elastic buckling of honeycombs. Int J Mech Sci 2002; 44: 1429-43.
[18] Huang JS, Chen TW. Survival probability for brittle honeycombs with plateau borders under uniaxial compression. Acta Mech 2003,164: 61-74.
[19] Yang MY, Huang JS. Numerical analysis of the stiffness and strength of regular hexagonal honeycombs with Plateau borders. Comp Struct 2004; 64: 107-14.
[20] Simone AE, Gibson LJ. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Mater 1998; 46: 3929-35.
[21] Huang JS, Chang FM. Elastic moduli and strength of hexagonal honeycombs with curved cell edges, Comp Struct 2005; 69: 183-91.
[22] Grenestedt JL. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. J Mech Phy Solids 1998; 46: 29-50.
[23] Silva MJ, Hayes WC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 1995; 37: 1161-77.
[24] Silva MJ, Gibson LJ. The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 1997; 39: 549-63.
[25] Zhu HX, Hobdell JR, Windle AH. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phy Solids 2001; 49: 857-70.
[26] Warren WE, Kraynik AM. The linear elastic properties of open-cell foams. ASME J Appl Mech 1988; 55: 341-6.
[27] Warren WE, Kraynik AM. The linear elastic behavior of a low-density Kelvin foam with open-cells. ASME J Appl Mech 1997; 64: 787-95.
[28] Li K, Gao XL, Roy AK. Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano’s second theorem. Comp Sci Tech 2003; 63: 1769-81.
[29] Hohe J, Becker W. Effective stress-strain relations for two-dimensional cellular sandwich cores: homogenization, material models, and properties. Applied Mechanics Reviews 2002; 55: 61-87.
[30] Chung J, Waas AM. In-plane biaxial crush response of polycarbonate honeycombs. J Engng Mech 2001; 127: 180-93.
[31] Zhu HX, Mills NI. The in-plane non-linear compression of regular honeycombs. Int J Solids Struct 2000; 37: 1931-49.
[32] Triantafyllidis N, Schraad MW. Onset of failure in aluminum honeycombs under general in-plane loading. J Mech Phys Solids 1998; 46: 1089-124.
[33] Gibson LJ, Ashby MF, Zhang J, Triantafillou TC. Failure surfaces for cellular materials under multiaxial loads- I. modeling. Int J Mech Sci 1989; 31: 635-63.
[34] Klintworth JW, Stronge WJ. Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. Int J Mech Sci 1988; 30: 273-92.
[35] Zhang J, Ashby MF. Buckling of honeycomb under in-plane biaxial stresses. Int J Mech Sci 1992; 34: 491-509.
[36] Chuang CH, Huang JS. Yield surfaces for hexagonal honeycombs with Plateau borders under in-plane biaxial loads. Acta Mech 2002; 159: 157-72.
[37] Huang JS, Gibson LJ. Fracture toughness of brittle honeycombs. Acta Metall Mater 1991; 39: 1617-26.
[38] Huang JS, Chou CY. Survival probability for brittle honeycombs under in-plane biaxial loading. J Mater Sci 1999; 34: 4945-54.
[39] Simone AE, Gibson LJ. Aluminum foams produced by liquid-state process. Acta Mater 1998; 46: 3109-23.
[40] Yang MY, Huang JS. Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression. Comp Struct 2005; 71: 229-37.
[41] Yang MY, Huang JS. Failure surfaces for brittle honeycombs with Plateau borders under in-plane biaxial loads. Comp Struct 2006; 72: 512-20.
[42] Lin JY, Huang JS. Creep-buckling of hexagonal honeycombs with plateau borders. Composites Science and Technology 2006; 66: 51-60.
[43] Yang MY, Huang JS, Hu JW. Elastic buckling of hexagonal honeycombs with dual imperfections, Compostie Structures, accepted.
[44] Weibull W. A statistical distribution function of wide applicability. J Appl Mech 1951; 18: 293-7.
[45] Jayatilaka ADS. Fracture of engineering brittle materials. New York: Applied Science; 1979.
[46] Grenestedt JL. On interactions between imperfections in cellular solids. J Mater Sci 2005; 40: 5853-57.
[47] Li K, Gao XL, Subhash G. Effects of cell shape and cell wall thickness variation on the elastic properties of two-dimensional cellular solids. Int J Solids Struct 2005; 42: 1777-95.
[48] Li K, Gao XL, Subhash G. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foam. J Mech Phys Solids 2006; 54: 783-806.
[49] Hsieh YY, Mau ST. Elementary Theory of Structures, 4th ed., New Jersey, USA: Prentice Hall; 1995.
[50] ABAQUS Manual Version 6.4 Hibbit, Karlsson and Sorenson, Inc. Pawtucket, RI, USA, 2003.
[51] Ohno N, Okumura D, Noguchi H. Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation. Journal of the Mechanics and Physics of Solids 2002; 50: 1125-153.
[52]Huang JS, Gibson LJ. Creep of open-cell Voronoi foams. Mater Sci Eng A 2003; 339: 220-26.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top