跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高宗永
研究生(外文):Tsung-Yung Kao
論文名稱:以複合材料模型驗證分析加勁擋土牆行為之研究
論文名稱(外文):The Simulation and Verification on the GRS Retaining Wall Using Composite Material Model
指導教授:陳景文陳景文引用關係
指導教授(外文):Jing-Wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:複合材料加勁擋土牆
外文關鍵詞:GRS Retaining WallComposite Material
相關次數:
  • 被引用被引用:3
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Lee(2000)的複合材料觀念及Boyle(1995)所進行UCD(Unit Cell Device)試驗的結果,發展出一系列在平面應變下,GRS(Geosynthetic-Reinforced Soil)及土壤之彈性模數,同時以二維有限差分法程式FLAC(Fast Lagrangian Analysis of Continua)建立加勁擋土牆之複合材料數值模型,分析建造完成後之應力應變行為,並與現地實體擋土牆量測到之變位與應變,進行比較討論。
本文以美國華盛頓州Rainier Avenue wall做為數值分析模型,該加勁擋土牆採用回包式牆面,設計高度為12.6公尺,加勁材埋置長度為9.5公尺。並於牆後3公尺處裝置傾斜計(Inclinometer)與加勁材上之應變計,取得牆體隨深度變化之水平變位與加勁材應變之實測值。複合模型以0.5%、1.0%及2.0%三種不同側向應變條件下,分析觀測牆後3公尺之應力應變變化,以便與實測值比較分析。
研究成果顯示,利用FLAC 有限差分程式配合複合材料模型,分析加勁擋土牆之牆體變位及應變,可得到與實測值良好之一致性。加勁擋土牆之h/H小於0.38時,以0.5%側向應變模型較接近實測值,而h/H介於0.38到0.48時,則實測值與1.0%側向應變模型相近,h/H大於0.48時,則以2.0%側向應變模擬,可獲得較合理之預測。
Based on the concept of composite material for the GRS (Geosynthetic-Reinforced Soil) retaining wall (Lee, 2000), this study developed a series of elastic moduli in plain strain using the UCD(Unit Cell Device)testing results from Boyle(1995). Subsequently, the finite difference method of FLAC(Fast Lagrangian Analysis of Continua)was utilized to build the composite material model of GRS retaining wall and to analyze its stress-strain behavior after construction. A comparison was therefore made and discussed between the analyzed results and the field measurements.
The Rainier Avenue Wall of GRS retaining wall built in Washington State in US was adopted as the simulated object. The wrapped-around facing was adopted for the 12.6m-heighted wall with the 9.5m-lengthed reinforcements embedded in a vertical spacing of 0.38m. The field measurement of the inclinometer and the strain gage on the reinforcements at a distance of 3m behind the wall facing were collected for the comparison with the simulation results as of different lateral strain condition in 0.5%, 1.0%, 2.0% of the composite models.
It is found that the performance of the composite material model using FLAC reveals its consistency with the field measurement. The horizontal displacement of the GRS wall was related to the height ratio h/H of the height in concern. When h/H less than 0.38, 0.5% of lateral strain model is suitable, while 0.38〈h/H〈0.48, the deformation is close to the 1.0% model. As for h/H greater than 0.48, the model of 2.0% in lateral strain would be appropriate for the simulation and prediction.
摘 要 I
ABSTRACT III
致 謝 IV
目 錄 V
表目錄 VIII
圖目錄 IX
符號說明表 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法 2
1.4 論文內容 2
第二章 文獻回顧 4
2.1 擋土結構物介紹 4
2.2 加勁擋土牆原理 6
2.3 加勁擋土牆穩定分析 9
2.3.1 極限平衡分析法 9
2.3.2 工作應力分析法 11
2.4 加勁土壤分析模型 12
2.4.1 分離元素模型 12
2.4.2 複合元素模型 13
2.4.3 數值分析法介紹 14
2.5 FLAC程式介紹 17
2.5.1 簡介 17
2.5.2 基本術語定義及指令說明 22
2.5.3 FLAC內建材料模式 24
2.5.4 界面元素 26
2.5.5 內建結構元素 26
2.6 UCD試驗(UNIT CELL DEVICE TEST) 28
2.6.1 試驗儀器與方法 28
2.6.2平面應變下之橫向等向性材料 30
2.6.3 複合材料參數 35
2.6.4 GRS彈性模數 38
2.7 加勁土壤簡化分析模型 41
2.7.1 簡化加勁土壤的土壓力係數 41
2.7.2 簡化加勁土壤的彈性模數 43
第三章 GRS加勁行為 45
3.1 複合性質的非等向性模型 45
3.2 UCD試驗資料分析 47
3.3 不同側向應變下之GRS彈性模數 62
第四章 數值模擬 73
4.1 模擬對象介紹 73
4.2 複合彈性模數 75
4.3 複合模型建構 79
4.4 模擬結果與討論 81
第五章 結論與建議 92
5.1 結論 92
5.2 建議 93
參考文獻 94
自 述 98

表目錄
表2-1 使用FEM發展的加勁擋土牆的分析程式(Lee;2000) 16
表2-2 不同GRS彈性模數之經驗式係數(Lee;2000) 40
表3-1 0.2%水平應變下GRS之複合彈性模數 48
表3-2 0.5%水平應變下GRS之複合彈性模數 49
表3-3 1.0%水平應變下GRS之複合彈性模數 50
表3-4 1.5%水平應變下GRS之複合彈性模數 51
表3-5 2.0%水平應變下GRS之複合彈性模數 52
表3-6 不同側向應變下GRS彈性模數回歸之經驗公式係數 69
表4-1 加勁材之型號與特性(Lee 2000) 74
表4-2 Rainier Avenue wall加勁材之應變(Allen 等,1992) 82

圖目錄
圖2-1 擋土系統:(a)外部穩定,(b)內部穩定,(c)混合式 5
圖2-2 加勁土壤加勁機制(Huasmann,1990) 7
圖2-3 加勁土壤主應力情況(Lee;2000) 8
圖2-4 完全等塑性材料應力-應變關係圖 10
圖2-5 分離式土壤加勁材模型(Lee,2000) 13
圖2-6 正交異向性彈性加勁土壤複合模型(Lee,2000) 14
圖2-7 加勁擋土牆數值分析-底部束制模式 15
圖2-8 FLAC程式計算流程 21
圖2-9 FLAC程式分析網格 22
圖2-10 FLAC cable element材料行為(Itasca,1999) 27
圖2-11 Unit Cell Device試驗的橫斷面(Boyle,1995) 29
圖2-12 UCD試驗中試體尺寸及受力方向示意圖 30
圖 2-13 應力元素的方向(Lee,2000) 32
圖2-14 平面應變載重下的材料元素 34
圖2-15 複合加勁土壤之應力條件.(Lee,2000) 37
圖2-16 GRS在1%側向應變下的水平彈性模數(Lee;2000) 38
圖2-17 GRS在1%側向應變下的垂直彈性模數(Lee;2000) 39
圖2-18 純土壤在不同覆土壓力下之彈性模數(Lee;2000) 40
圖2-19 加勁擋土牆側向土壓力及加勁材拉力分布圖 42
圖2-20 加勁擋土牆複合側向土壓力分布圖(Lee,2000) 42
圖3-1 模擬UCD之加勁土元素 46
圖3-2 GRS(GTF200)在不同側向應變下的水平彈性模數 53
圖3-3 GRS(GTF200)在不同側向應變下之垂直彈性模數 53
圖3-4 GRS(GTF375)在不同側向應變下的水平彈性模數 54
圖3-5 GRS(GTF375)在不同側向應變下的垂直彈性模數 54
圖3-6 GRS(GTF500)在不同側向應變下的水平彈性模數 55
圖3-7 GRS(GTF500)在不同側向應變下的垂直彈性模數 55
圖3-8 GRS(GTF1225)在不同側向應變下的水平彈性模數 56
圖3-9 GRS(GTF1225)在不同側向應變下的垂直彈性模數 56
圖3-10 不同GRS在側向應變0.2%時之水平彈性模數 57
圖3-11 不同GRS在側向應變0.2%時之垂直彈性模數 57
圖3-12 不同GRS在側向應變0.5%時之水平彈性模數 58
圖3-13 不同GRS在側向應變0.5%時之垂直彈性模數 58
圖3-14 不同GRS在側向應變1.0%時之水平彈性模數 59
圖3-15 不同GRS在側向應變1.0%時之垂直彈性模數 59
圖3-16 不同GRS在側向應變1.5%時之水平彈性模數 60
圖3-17 不同GRS在側向應變1.5%時之垂直彈性模數 60
圖3-18 不同GRS在側向應變2.0%時之水平彈性模數 61
圖3-19 不同GRS在側向應變2.0%時之垂直彈性模數 61
圖3-20 GRS在0.2%水平應變下之水平彈性模數 64
圖3-21 GRS在0.2%垂直應變下之垂直彈性模數 64
圖3-22 GRS在0.5%水平應變下之水平彈性模數 65
圖3-23 GRS在0.5%垂直應變下之垂直彈性模數 65
圖3-24 GRS在1.0%水平應變下之水平彈性模數 66
圖3-25 GRS在1.0%垂直應變下的垂直複合模數 66
圖3-26 GRS在1.5%水平應變下的水平複合模數 67
圖3-27 GRS在1.5%垂直應變下的垂直複合模數 67
圖3-28 GRS在2.0%水平應變下的水平複合模數 68
圖3-29 GRS在2.0%垂直應變下的垂直複合模數 68
圖3-30 平面應變下之土壤彈性模數(側向應變0.2%) 70
圖3-31 平面應變下之土壤彈性模數(側向應變0.5%) 70
圖3-32 平面應變下之土壤彈性模數(側向應變1.0%) 71
圖3-33 平面應變下之土壤彈性模數(側向應變1.5%) 71
圖3-34 平面應變下之土壤彈性模數(側向應變2.0%) 72
圖4-1 Rainier Avenue 擋土牆設計斷面圖(Lee 2000) 74
圖4-2 加勁擋土牆複合模型之單位元素 75
圖4-3 數值模擬之網格 80
圖4-4各種模型與傾斜計於牆後3公尺之變形量 83
圖4-5 Composite-0.5%模型之位移向量 84
圖4-6 Composite-1.0%模型之位移向量 84
圖4-7 Composite-2.0%模型之位移向量 85
圖4-8 Composite-0.5%模型之水平位移 85
圖4-9 Composite-1.0%模型之水平位移 86
圖4-10 Composite-2.0%模型之水平位移 86
圖4-11 Composite-0.5%模型之垂直位移 87
圖4-12 Composite-1.0%模型之垂直位移 87
圖4-13 Composite-2.0%模型之垂直位移 88
圖4-14 Composite-0.5%模型之水平應力 88
圖4-15 Composite-1.0%模型之水平應力 89
圖4-16 Composite-2.0%模型之水平應力 89
圖4-17 Composite-0.5%模型之垂直應力 90
圖4-18 Composite-1.0%模型之垂直應力 90
圖4-19 Composite-2.0%模型之垂直應力 91
1.周南山,「地工合成物加勁坡分析設計之探討與評估」,地工技術,第43期,第32-42頁,(1993)。
2.Allen, T. M., Christopher, B.R., and Holtz, R.D. (1992) “Performance of a 12.6 m High Geotextile Wall in Seattle, Washington”, Geosynthetic-Reinforced Soil Retaining Walls, Proceedings of the International Symposium on Geosynthetic-Reinforced Soil Retaining Walls, Denver, J.T.H. Wu, Ed., Balkema, Rotterdam, pp. 81-100.
3.Bathurst, R.J., and Koerner R.M., “Results of Class A Predictions for the RMC Reinforced Soil Wall Trials,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: Applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 127-171, (1988).
4.Bathurst, R.J., and Hatami, K., “Seismic Response Analysis of a Geogrid-Reinforced Soil Retaining Wall”, Geosynthetics International, Vol.5, No.1-2, pp.127-166, (1998).
5.Bell, J. R., Barrett, R. K., and Ruckman, A. C. (1983) “Geotextile Earth-Reinforced Retaining Wall tests: Glenwood Canyon, Colorado,” Transportation Research Record 916, pp. 59-69.
6.Boyle, S.R. (1995) “Deformation Prediction of Geosynthetic Reinforced Soil Retaining Walls,” Ph.D. Dissertation, University of Washington, Seattle, 391p
7.Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses,” Geotechnical Engineering Report, No. UCB/GT/80-01, University of California, Berkeley, (1980).
8.Christopher, B.R. (1993) “Deformation Response and Wall Stiffness in Relation to Reinforced Soil Wall Design,” Ph.D. Dissertation, Purdue University, West Lafayette, Indiana, 354p.
9.Gray, D.H., and Ohashi, H., “Mechanics of Fiber Reinforcement in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 3, pp. 335-353, (1983).
10.Hausmann, M.R., “Strength of Reinforced Soil,” Proceeding of Eighth Australian Road Research Board Conference, Perth, Session 13, pp. 1-3, (1976).
11.Hausmann, M.R., and Lee, K.L., “Strength Characteristics of Reinforced Soil,” Proceedings of the International Symposium on New Horizons in Construction Materials, Lehigh, Vol. 1, pp. 165-176, (1976).
12.Hausmann, M.R. (1990) Engineering Principles of Ground Modification, McGraw-Hill, 632p.
13.Holtz, R.D. and Lee, W.F. (1998) Geosynthetic Reinforced Wall Analysis, Phase II: Use of In-Soil Geosynthetic Behavior to Predict Deformation, Report No. WA-RD 452.1, Washington State Department of Transportation, 32p.
14.Itasca Consulting Group, Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc.Volume I, II, III, IV, (1999).
15.Jones, C. J.F.P., Earth Reinforcement and Soil Structures, Thomas Telford, (1997).
16.Lade, P.V., and Lee, K.L., “Engineering Properties of Soils,” Report UCLA-ENG-7652, pp. 145, (1976).
17.Lee, W.F., Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls, Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000).
18.Lindquist, D.D., “Seismic Modeling of Geosynthetic Reinforced Slopes,” Master of Science Thesis, Department of Civil and Environmental Engineering, University of Washington, Seattle, (1998).
19.Mitchell, J.K. and Villet, W.C.B., “Reinforcement of Earth Slopes and Embankments,” National Cooperative Highway Research Program Report 290, Transportation Research Board, 323 p., (1987).
20.NCMA, “Segmental Retaining Walls – Seismic Design Manual”, 1st Edition, National Concrete Masonry Association, Bathurst, R. J., USA, (1998).
21.Rowe, R.K. and Ho, S.K., “Application of Finite Element Techniques to the Analysis of Reinforced Soil Walls,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 541-556, (1988).
22.Rowe, R.K. and Ho, S.K., “Keynote Lecture: A Review of the Behavior of Reinforced Soil Walls,” Earth Reinforcement Practice, Proceedings of the International Symposium on Earth Reinforcement Practice, Fukuoka, H. Ochiai, S. Hayashi and J. Otani, Eds., Balkema, Rotterdam, pp. 801-830, (1993).
23.Schlosser, F. and Long, H.T., “Recent Results in French Research on Reinforced Earth,” Journal of the Construction Division, ASCE, Vol. 100, No. CO3, pp. 223-227, (1972).
24.Seed, H.B. and Whitman, R.V., “Design of Earth Retaining Structures for Dynamic Loads,” ASCE Specialty Conference: Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, NY, pp. 103-147, (1970).
25.Stanley R.Boyle, Deformation Prediction of Geosynthetic Reinforced Soil Retaining Walls, Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (1995).
26.Yang, M.A. and Singh, A., “Strength and Deformation Characteristics of Reinforced Sand,” National Meeting on Water Resources Engineering, ASCE, Los Angeles, Preprint 2189, (1974).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 63.黃光國(1999),多元典範的研究取向:論社會心理學的本土化。社會理論學報,第二卷第一期,1-51。
2. 47.張德銳(1994)。淺談學校衝突管理。教師天地,64,49-53。
3. 36.洪福財(1995)。學校組織衝突成因及其因應策略。教育資料文摘,214,171-192。
4. 28.林天祐(1996)。學校教師會與學校行政:競爭與合作?教育資料與研究,8,18-19。
5. 6.方鴻鳴(1998)。教育向前行:教師會功能及運作問卷調查。教師天地,94 期,58-63 頁。
6. 4.王本壯(1995)「社區總體營造過程中衝突管理模式之初探 --- 以三義神雕藝術造街為例」,《聯合學報》,13,107-133。
7. 3.王朝茂(1992)學校衝突問題探討。教育文粹,21,106-126。
8. 1.周南山,「地工合成物加勁坡分析設計之探討與評估」,地工技術,第43期,第32-42頁,(1993)。
9. 70.劉春榮(1996)。教師專業自主權與學生受教權之關聯。教育資料與研究,10 期,42-44 頁。
10. 伍振鷟,〈顏之推之人生哲學與教育思想〉,臺灣省立師範大學教育研究所集刊 ,第二輯(1959):113-119。
11. 李軍,〈顏之推學習理論探析〉孔孟月刊,第31卷11期(1993):32-39。
12. 李軍,〈論顏之推的儒家兒童教育思想〉孔孟月刊,第33卷第3期(1994):38-44。
13. 李振興,〈顏之推的期待-從《顏氏家訓.勤勉篇》探其義蘊〉,中華學苑,第45期(1995):161-184。
14. 林文寶,〈顏之推著作考〉,臺東師專學報,第4期,(1976):153-177。
15. 林素珍,〈魏晉南北朝女教概述〉,國文學誌,(1998):105-124。