跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅國峰
研究生(外文):Kuo-Feng Lo
論文名稱:大型基樁完整性檢測之試驗與分析
論文名稱(外文):INTEGRITY TEST AND ANALYSIS OF LARGE PILE
指導教授:倪勝火倪勝火引用關係
指導教授(外文):Sheng-huoo Ni
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:113
中文關鍵詞:非破壞檢測時頻分析數位訊號處理基樁
外文關鍵詞:PileNondestructive testTime-Frequency AnalysisNumerical Signal Process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:2
長期以來,非破壞檢測及評估技術已經成為鑽掘式及貫入式基樁施工過程之品質控制方法。特別是將低應變之檢測方法(如:音波回音法sonic echo method,SE、脈波回應法impulse response method,IR),應用於新近施工完成之基樁長度與完整性檢測。然而,相較以往之基樁,現今的基樁長度則是越來越長。而傳統的SE 法的檢測基樁技術與設備,已無法應用於長大型基樁檢測。實際上,SE法應用於長大型之基樁有以下限制:長度無法過長及長度與直徑比較大之基樁;缺陷面積不應過小;無法檢測多重缺陷及含樁帽之基樁。
本研究為克服上述之限制,特將SE 法之硬體及分析軟體進行修正:變更檢
測設備並應用新的數位訊號處理(numerical signal process)方法Wigner-Ville distribution(WVD),於分析檢測結果如長度較長;含微小缺陷面積;含多重缺陷及含樁帽等之基樁檢測。研究結果顯示,修正後之設備依舊適用預力基樁及場鑄基樁的檢測。另外,時頻分析WVD 理論被證明確實可應用於基樁完整性檢測之結果分析,可清楚辨識並定位出基樁內缺陷及樁尖的位置。同時,運用WVD不僅可以將檢測所得之特徵值視覺化,使結果更容易辨識,並可檢測出以往研究學者所無法所求得之結果。
Nondestructive test and evaluation (NDT&E) techniques have been used for many years to provide a quality control method during the construction procedures for drilled shafts and driven concrete piles. In particular, low strain pile integrity test methods (e.g., both sonic echo and impulse response methods) have been used to check the lengths and integrity of newly installed foundations. Nowadays, pile length is increasingly longer than it had been in the past, and traditional SE method testing techniques and equipment seem to have some difficulty identifying proper pile integrity. In fact, there are limitations in testing and evaluating, including: longer and larger length-diameter ratio pile, defect with small necking area, multi-defects and pile with cap.
In this dissertation, hardware and software of SE test are both upgraded, including: modification of equipments to overcome these limitations and adoption of a new numerical signal process method, Wigner-Ville distribution WVD, to interpret the testing results (e.g. longer pile, small necking, two necking defects and pile with cap). The experimental results indicate that modified equipments still applied to both pre-stressed pile and cast-in-place plies. Besides, WVD theory is feasible to detect and locate necking(s) in pile. Not only WVD can also visualize the test results, and provide more details that were previously unavailable to researchers.
中文摘要………………………………………………………………………………I
ABSTRACT…………………………………………………………………………..II
誌謝…………………………………………………………………………………..III
TABLE OF CONTENTS…………………………………………………………….IV
LIST OF TABLES……………………………………………………………….....VIII
LIST OF FIGURES……………………………………………………………… ....IX
LIST OF SYMBOLS………………………………………………………………XIII
CHAPTER 1 STATEMENT OF RESEARCH………………………………………..1
1.1 Background and Motivation……………………………………………………..1
1.2 Objectives and Scope……………………………………………………………2
1.3 Organization……………………………………………………………………..3
Chapter 2 BASIC CONCEPTS OF WAVE THEORY AND TIME-FREQUENCY ANALYSIS………………………………………………………………………..…..8
2.1 One Dimensional Wave Propagation Theory…...…………………………………8
2.1.1 Theoretical Background of One Dimensional Wave Theory………..…………..8
2.1.2 Boundary Conditions at the Top and Toe…………………………….………...10
2.1.3 Pile Discontinuities……………...…………………………………….……….13
2.2 Literature Review of Low Strain of Pile Integrity Test...………………....…..…14
2.2.1 Literature Review……………………………………………………….……..14
2.2.2 Limitation of Low Strain Pile Integrity Test……………………………..…….16
2.3 Concept of Signal Analysis……………......……………………………………..19
2.3.1 Time domain and frequency domain……………………………………..…….19
2.3.2 Fourier Transform…………………………………………………………..….20
2.3.3 Short- Time Fourier Transform……………………………………………...…22
2.3.4 Wavelet Transform……………………………………………………..………24
2.4 Mathematical Model of Time-Frequency Analysis……...……………….…..….26
2.4.1 Winger-Ville Distribution………………………………. …………………….26
2.4.2 Discrete Wigner-Ville Distribution….…………………………………..…….30
Chapter 3 FACILITY OF SONIC ECHO METHOD …………………………….36
3.1 Sonic Echo Method……………………………………………………………...37
3.2 Spectrum Analyzer ……………………………………………………………...39
3.3 Geophone………………………………………………………………………..39
3.4 Dynamic Hammer…………………………………………………………..…...40
Chapter 4 CASE STUDY…………..………………………………………………46
4.1 Casting In-Place Pile Test………………………………………………………..47
4.1.1 Impact Force Affect……………….……………………………………….…..48
4.1.2 Intact Pile Testing……………………………………….……………………..49
4.1.3 Sensor Accelerometer and Seismic Velocity Pickups…….…………..………..51
4.1.4 Different Hammer Stiffness Affect………………………………….…………51
4.2 Group Pile Test Without Cap……………………...………………….………….53
4.3 Pile With Necking………………………………………………………….…….69
4.3.1 Intact Prestressed Concrete Pile………………………………………..………69
4.3.2 Prestressed Concrete Pile With Necking …………………………………..…..71
4.3.3 Prestressed Concrete Pile With Two Necking ………………………..………..72
4.4 Pile With Cap……………...……………………………………………………..80
Chapter 5 CONCLUSION AND SUGGESTION…………………………………86
5.1 Conclusion……………………………………………………………..………...86
5.2 Suggestion………………………………………………………………...……...88
BIBLIOGRAPHY……….…………………………………………………………..90
APPENDIX A……..…………………………………………………………………96
自述
1.Addison, P.S., Sibbald, A. and Watson, J.N., Wavelet analysis: a mathematical microscope with civil engineering applications, Insight Vol. 39 N0. 7, pp. 493-497 (1997).
2.Addison, P.S. and Watson, J.N., Wavelet analysis for low strain integrity testing of foundation piles, 5th Intl. Conf on Inspection, Appraisal, Repairs, Maintance of Buildings and Structures, Singapore, pp.15-16 (1997).
3.Antonia, P.S., Application in time-frequency signal processing, CRC Press LLC, (2003).
4.ASTM, Standard Test Method for Low Strain Integrity Testing of Piles, Annual Book of ASTM Standards, D-5882, Vol. 04.08 (1995).
5.Baxter, S.C., Islam, M.O. and Gassman S.L., Impulse Response Evaluation of Drilled Shafts with Pile Caps: Modeling and Experiment, Canadian Journal of Civil Engineering, Vol. 31, No. 2, pp.169-177 (2004).
6.Blaney, G.W., Kausel E. and Roesset J.M., Dynamic Stiffness of Piles, 2nd Int. Conf. Numerical Methods in Geomechanics, Blacksburg, Virginia, pp.1001-1012 (1976).
7.Boashash, B. Respresentation conjointe en temps et en frequence des signaux d’energie finie, Technical Report 373 78, Elf-Acquitaine Research Publication (1978).
8.Boashash, B. and Barkat, B., Introduction to time-frequency signal analysis, Wavelet Transforms & Time-Frequency Signal Analysis, pp. 321-340 (2001).
9.Bruce, W.M. and Stephen, E.C., Bridge Scour, Water Resources Publications, LLC. (2000).
10.Bruce, J.C. and Blodgett, J.C., Countermeasures for hydraulic problems at bridges, Vols. 1 and 2, Federal Highway Administration, U.S. Department of Transportation, Washington D.C., U.S.A. (1978).
11.Claaen, T.A.C.M. and Mecklenbräuker, W.F.G., The Wigner distribution – a tool for time-frequency signal analysis- Part-II. Discrete time signals, Philips J. Res., 35, 276-300 (1980).
12.Cohen, L., Introduction: A Primer on Time-Frequency Analysis, Time-Frequency Signal Analysis Method and Applications, pp. 3-22 (1992).
13.Cunningham, G.S. and Williams, W.J., Kernel decompositions of time-frequency distribution, IEEE Trans. Signal Process, 42, pp1425-1442 (1994).
14.Davis, A.G. and Dunn, C.S., From Theory to Field Experience with the Nondestructive Vibration Testing of Piles., Proc. Int. Civil Engineering, Part 2, 57, Dec., pp.571-593 (1974).
15.Davis, A.G. and Robertson, S.A., Vibration Testing of Piles, The Structure Engineering, 54, No. 6, Jun., pp. A7-A10 (1976).
16.Fabian, K., Bernd, P., Dynamic Methods in Pile Testing: Developments in Measurement and Analysis, Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance pp.868 - 882 (2002).
17.Gabor, D., Theory of Communication, Journal of IEEE, 93, pp.429-457 (1946).
18.Gassman, S.L. and Finno R.J., Impulse response evaluation of foundations using multiple geophones, Journal of Performance of Constructed Facilities, pp.82-89 (1999).
19.Goldman, S., Vibration Spectrum Analysis: A Practical Approach, Industrial Press Inc., New York, pp.23 – 64 (1991).
20.Goodman, R.E., Taylor, R.L. and Brekke, T.L., A Model for the Mechanics of Jointed Rock, Journal of the Soil Mechanics and Foundations Div., ASCE, Vol. 94, No SM3, pp.637-659 (1968).
21.Graff, K., Wave motion in elastic solids, Clarendon Press, Oxford (1975).
22.Haar, A., Zur Theorie der Orthogonalen Funktionenysystem, Math. Annal., Vol.69, pp.331-371 (1910).
23.Hamada, M., Damage to Piles by Liquefaction-Induced Ground Displacements, Proc. 3rd U.S. Conference Lifeline Earthquake Eng., ASCE, Los Angeles, 1172-1181 (1991).
24.Hartung, M., Meier, K. and Rodatz, W., Integrity Testing on Model Pile, The 4th Int. Conference on the Application of Stress-Wave Theory to Piles, Netherlands, Balkema, Rotterdam, pp.265-271 (1992).
25.Higgs, J.S., Integrity Testing of Concrete Piles by shock Method, Concrete, Oct., pp.31-33 (1979).
26.Hussein, M., Likins, G. and Goble, G., Determination of pile length under existing structures, Proceedings, Deep Foundation Institute annual Meeting, New Orleans (1992).
27.Jochen, H.K., Ruck H.J., Ruck, Florian F. and Christian U.G. and Reinhardt, H.W., Wavelet Algorithm for Non-destructive Testing, International Symposium (NDT-CE 2003), Non-Destructive Testing in Civil Engineering (2003).
28.Kim, D.S., Kim, H.W. and Kim, W.C., Parametric study on the impact-echo method using mock-up shafts, Elsevier NDT&E international 35, pp.595-608 (2002).
29.Liao, S.T., Nondestructive Testing of Piles, Ph. D. Dissertation, Department of Civil Engineering, University of Texas, Austin, Texas (1994).
30.Likins, G. and Rausche F., Presentation of low strain integrity testing in the time-frequency domain, Application of Stress-Wave Theory to Piles, Rotterdam, pp.211-218 (2000).
31.Lin, Y., Sansalone, M. and Carino, N.J., Impact–Echo Response of Concrete Shafts, Geotechnical Testing Journal, GTJODJ, 14, No. 2, Jun., pp.121-137 (1991).
32.Lysmer, J. and Richart, F.E., Dynamic response of footings to vertical loading, J. Soil Mech. Found. Div. ASCE, 92 (SM1), pp.65-91 (1966).
33.Mallat, S., A theory of or multiresolution signal decomposition: the wavelet representation, IEEE trans. Pattern Anal., Machine Intel., Vol. 11, pp.674-693 (1989).
34.Mayer, Y., Ondelettes et functions splines, Seminaire EDS, Ecole Polytechnique, Paris (1986).
35.Malhotra, V.M., Testing Hardened Concrete: Nondestructive Methods, Iowa State University Press, Ames, Iowa, and American Concrete Institute, Detroit, Michigan, pp. 87 (1976).
36.Ni, S.F. and Lo, K.F., A study of Wavelet Transformation for Pulse Echo Applied to Piles, NDT Science & Technology, Vol. 19 No.1, (1-2), 4-15 (2001). (in Chinese)
37.Ni, S. H., Charng, J. J. and Lo, K.F., Nondestructive Detecting of Pile Integrity by Wigner-Ville Distribution, Journal of Mechanics (accepted) (2006).
38.Ni, S.H., Lehmann L., Charng, J.J. and Lo, K.F., Low-Strain Integrity Testing of Drilled Piles with High Slenderness Ratio, Computers and Geotechnics (33) pp.283-293 (2006).
39.Ni, S.H., Charng, J.J. and Lo, K.F. Optimum Configuration of Nondestructive Test for Larger and Longer Pile, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.18 (4), pp.487-493 (2006). (in Chinese)
40.Ni, S.H., Charng, J.J. and Lo, K.F., Nondestructive Detecting of Pile Integrity by Wigner-Ville Distribution, Journal of Mechanics, Vol. 23, No.1, pp. 235-241 (2007).
41.Olson, L.D., Jalinoos, F. and Aouad, M.F. Determination of Unknown Subsurface Bridge Foundations, the NCHRP 21-5 Interim Report (1998).
42.Olson, L.D. and Wright, C.C., Nondestructive testing of deep foundations with sonic methods, Proc., Found. Eng. Cong.: Current Principles and Practice, Vol. 2, ASCE, pp.1173–1183 (1989).
43.Ovanesova, A.V. and Suarez, L.E., Application of Wavelet transform to damage detection in frame structures, Engineering Structures, 26, 39-49 (2004).
44.Percival, D. and Walden, A., Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, United Kingdom (2002).
45.Priestly, N., Singh, J., Youd, T., and Rollins, K., Costa Rica Earthquake of April 22, 1991 Reconnaissance Report, Pub. 91-02, Earthquake Eng. Research Inst., pp.59-91 (1991).
46.Qian, S. Introduction to Time-Frequency and Wavelet Transforms, Prentice Hall PTR Prentice-Hall, Inc., 101-126 (2002).
47.Qian, S. and Chen, D., Joint time-frequency analysis, IEEE Signal Processing Magazine, pp.52-67 (1999).
48.Qian, S., Introduction to Time-Frequency and Wavelet Transforms, Prentice Hall PTR Prentice-Hall, Inc., pp.101-126 (2002).
49.Finno, R. J., Gassman, S.L. and Osborn, P.W., Non-destructive Evaluation of a Deep Foundation Test Section at the Northwestern University National Geotechnical Experimentation Site, Federal Highway Administration (1997).
50.Schellingerhout, A.J.G., Quantifying Pile Defects by Integrity Testing, Application of Stress-Wave Theory to Piles, Int. Conf., Balkema, Rotterdam, pp.319-324 (1992).
51.Seed, R., Dickenson, S., Riemer, M., Bray, J., Sitar, N., Mitchell, J., Idriss, I., Kayen, R., Kropp, A., Harder, L.Jr., and Power, M., Preliminary Report on the Principal Geotechnical Aspects of the October 17, 1989 Loma Prieta Earthquake, Rpt. No.UCB/EERC-90/05, Earthquake Eng. Research Ctr., Univ. of California (1990).
52.Serutti, S., Bianchi A.M., and Mainardi L.T., Advanced spectral methods for detecting dynamic behavior, Autonomic and Neuroscience: Basic and Clinical 90, pp.3-12 (2001).
53.Sedel, J. P., Presentation of low strain integrity testing in the time-frequency domain, Application of Stress-Wave Theory to Piles, Rotterdam, pp.193-200 (2000).
54.Seidel, J.P., Present of low strain integrity testing in the time-frequency domain, Application of Stress-Wave Theory to Piles: Test Results, Proceeding of The Fourth International Conference on The Application of Stress-Wave Theory to Piles, Netherlands, pp.199- 200 (1992).
55.Stain, R.T., Integrity Testing, Civil Engineering, London, April, pp.53-59 (1982a).
56.Stain, R.T., Integrity Testing, Civil Engineering, London, May, pp.71-73(1982b).
57.Thasnanipan, N., Maung, A.W. and Ganeshan, B., Sonic Integrity Test on Piles Founded in Bangkok Subsoil-Signal Characteristics and Their Interpretations, Proceedings: Fourth International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, U.S.A., p.p.1086-1092 (1998).
58.TNO Building and Construction Research, Foundation Pile Diagnostic System Sonic Integrity Testing (1997).
59.Tokimatsu, K., Mizuno, H. and Kakurai, M., Building Damage Associated with Geotechnical Problems, Soils and Foundations Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken Nambu Earthquake, JSSMFE, 36(1), 219-234 (1996).
60.Tuner, M.J. Integrity testing in piling practice, CIRIA Report 144, CIRIA, London (1997).
61.U.C. Berkeley, Geotechnical Reconnaissance of the Effects of the January 17, 455 1995 Hyogoken-Nanbu Earthquake, Japan, Rpt. No. UCB/EERC-95/01, Earthquake Eng. Research Ctr., Univ. of California (1995).
62.Watson, J.N., Addison, P.S. and Sibbald, A., The wavelet transform for pile integrity testing, Proc. 12th Engineering Mechanics Conf., La Jolla California, pp.17-20 (1998).
63.Wigner, E.P. On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, pp.749-759 (1932).
64.Zou, J. and Chen, J., A comparative study on time-frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform, Journal of Intact and Vibration, 276, pp.1-11 (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊