跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王國書
研究生(外文):Guo-shu Wang
論文名稱:結構動態反應訊號自動監測系統於剛心識別之應用
論文名稱(外文):Application of Automatic Structural Response Monitoring System on Identification of Center of Rigidity
指導教授:朱世禹
指導教授(外文):Shih-yu Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:206
中文關鍵詞:剛心識別扭轉耦合剪力屋架結構運動方程式即時建築物損壞指標與預知警報系統結構安全監測
外文關鍵詞:Structural Health MonitoringCenter of RigiditySystem IdentificationReal-Time Structural Damage Assessment and WarniReal-Time Structural Response Integrator
相關次數:
  • 被引用被引用:13
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
真實結構之動態反應訊號量測與訊號處理為結構安全監測與損壞識別的首要過程,為能夠快速提供安全監測與識別研究所需之各種資料,進一步達成自動化判別與快速預警功能,本論文應用最先進訊號自動處理軟硬體技術,建立一座與中央氣象局(Central Weather Bureau, CWB)現有裝設於結構物感應器並聯運作之「即時建築物損壞指標與預知警報系統(Real-Time Structural Damage Assessment and Warning System, RTSDAWS)」。於西元2006年12月26日恆春地震時,RTSDAWS和中央氣象局於國立成功大學雲平大樓同步監測到結構物加速度反應訊號,經由比對和驗證RTSDAWS整體流程在實際應用的可行性。

為建立RTSDAWS快速識別結構物損壞方法,藉由結構物剛心位置為判斷損壞的依據,以扭轉耦合剪力屋架結構運動方程式,將方程式推導為剛心識別公式,由結構物受強震的反應歷時識別結構物剛心位置,以剛心位置受強震移動的相對關係,評估結構物損壞位置。並應用SAP2000分析軟體建立單層樓和多層樓模型,將各模型單一柱斷面積折減時受震的反應歷時,探討剛心識別方法的可行性,進一步採用台東消防局破壞前和破壞後量測資料,驗證剛心識別在實際應用的可行性,以提供未來實際應用和RTSDAWS識別模組之參考。
Correct and fast response measurements of structures are the first procedure of structural health monitoring and damage assessment. In order to provide necessary information required by different identification modules rapidly, a Real-Time Structural Damage Assessment and Warning System (RTSDAWS) running in parallel with the existing building arrays installed by Central Weather Bureau (CWB) in Taiwan is developed in this study. Based on up-to-date data-acquisition and signal-processing technology, required signal manipulation modules and a Real-Time Structural Response Integrator (RTSRI) are embedded in the software of this system to perform the automatic structural response manipulating function. The experimental results from shaking table test of a benchmark model in National Center for Research on Earthquake Engineering (NCREE) in Taiwan are chosen to verify the proposed system and it has been implemented at the University Administrative Building (Yun-Ping Building) of National Cheng Kung University for further verification.

Since the onest of column failure will cause the redistribution of stiffness that is reflected by the movement of location of center of rigidity (CR), this idea can be used as the indication of failure. A preliminary identication module is deveioped and embedded in the RTSDAWS system in order to achieve rapid assessment requirement. Based on the equation of motion of torsionally-coupled (TC) shear type building, the identification scheme id derived by utilizing the measured acceleration record together with displacement response integrated through RTSRI directly. The feasibility of this module is investigated and verified by numerical simulation through the response of single-story and multiple-story TC models generated by SAP2000 computer software. It shows that the CR moves toward the opposite direction of which the damage developed. This module is then applied to the damage assessment of the Taitung Fire Department Building, located in Taitung City. The results agree well with the reconnaissance report of visual inspection after the Beinan Earthquake on April 1, 2006.
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 IX
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 本文內容 3
第2章 應用於剛心識別之理論介紹 5
2.1 柱勁度與剛心位置之關係 5
2.2 單層樓扭轉耦合剪力屋架結構運動方程式 6
2.3 多層樓扭轉耦合剪力屋架結構運動方程式 8
2.4 時間域反應數值模擬 11
2.5 第一模態頻率識別 14
第3章 RTSDAWS軟硬體介紹和實例測試驗證 20
3.1 RTSDAWS軟體和測試軟體介紹 20
3.1.1 MATLAB® 相關介紹 21
3.1.2 SIMULINK 21
3.1.3 Real-Time Workshop (RTW) 21
3.1.4 xPC 21
3.1.5 MATLAB® DAQ toolbox 22
3.2 數位濾波器 22
3.2.1 數位高通濾波器 23
3.2.2 數位低通濾波器 23
3.3 即時結構物模擬器(Real-Time Structural Simulator, RTSS) 24
3.4 RTSDAWS硬體和測試硬體介紹 25
3.4.1 感應器 25
3.4.2 集錄系統 25
3.4.3 測試驗證的數位/類比訊號擷取卡和數位/類比訊號轉接盒 25
3.4.4 工業型電腦(ICS - 480V)和訊號擷取卡 27
3.5 自製BNC訊號轉接盒製作與驗證 28
3.5.1 自製BNC訊號轉接盒的製作方法 28
3.5.2 使用xPC測試自製BNC訊號轉接盒 29
3.5.3 自製BNC訊號轉接盒結果比對 30
3.6 RTSDAWS之感應器訊號前處理 31
3.6.1 即時監測及自動觸發模組 31
3.6.2 質心訊號轉換修正模組 32
3.6.3 即時結構物反應積分模組 33
3.7 測試及驗證RTSDAWS訊號前處理各項模組 35
3.7.1 Benchmark D模型 35
3.7.2 利用RTSS模擬質心相對加速度反應歷時 36
3.7.3 RTSDAWS各項模組設定和測試流程 36
3.7.4 RTSDAWS之感應器訊號前處理各項模組驗證 37
3.8 RTSDAWS實際地震量測驗證 39
3.8.1 雲平大樓樓房結構體系簡述 40
3.8.2 雲平大樓強震監測系統 40
3.8.3 觀測感應器的基線平均偏移量(mean offset) 40
3.8.4 RTSDAWS實際結構物地震監控 41
第4章 剛心識別之數值模擬 99
4.1 單層樓模型靜力反應剛心識別 99
4.1.1 檢核單層樓鋼構架模型 100
4.1.2 剛心位置的理論解和樓層勁度 100
4.2 單層樓動力反應剛心識別 102
4.2.1 不同剛心位置對於勁度歷時的影響 103
4.2.2 試誤法識別剛心位置 105
4.2.3 有效位移等級和試誤法識別剛心位置 105
4.2.4 由剛心位置改變判斷模型損壞位置 106
4.3 多層樓模型剛心識別 107
4.3.1 檢核三層樓鋼構架模型 108
4.3.2 多層樓剛心識別的可行性 109
4.3.3 三層樓模型阻尼對剛心識別之影響 110
4.3.4 五層樓模型缺乏量測時對剛心識別之影響 111
4.4 即時反應積分模組對剛心識別之影響 112
4.5 非線性結構系統對剛心識別的影響 114
第5章 實際結構物之剛心識別 155
5.1 台東縣消防分隊大樓結構體簡述 155
5.2 台東縣消防分隊大樓剛心識別 155
5.2.1 剛心識別感應器訊號前置處理 156
5.2.2 台東消防分隊大樓損壞前和損壞後的剛心識別 158
5.3 台東縣消防分隊大樓損壞評估 160
第6章 結論與建議 183
參考文獻 185
自 述 187
[1]蔡克銓、羅俊雄、黃新愷、林信成、鄭維中、朱毅倫,「台灣地區結構物地震監測系統檢測及資料收集」,中央氣象局技術報告,編號MOTC-CWB-93-E-05, (2004)。
[2]The MathWorks Inc., Getting Started with MATLAB Version 7, MathWorks Inc. 3 Apple Hill Drive Natick, MA. (2004).
[3]The MathWorks Inc., Data Acquisition Toolbox User’s Guide, MathWorks Inc. Version 2 Apple Hill Drive Natick, MA. (2005).
[4]National Instruments, Data Acquisition E Series Help, Austin, Texas headquarters, U. S. (2005).
[5]The MathWorks Inc., Using Simulink Version 6, MathWorks Inc. 3 Apple Hill Drive Natick, MA. (2004).
[6]王信聰,「即時結構動態反應模擬器之研究應用」,碩士論文,國立暨南大學地震工程研究所,南投 (2005)。
[7]洪文政,「建築物加速度訊號即時積分系統軟硬體整合應用研究」,碩士論文,國立成功大學土木工程研究所,台南 (2006)。
[8]Chu, S.Y., Soong, T.T., Reinhorn, A.M., “Real-Time Active control verification via a structural simulator”, Enguneering Structures, Vol. 24, 343-353, (2002).
[9]Ketter R.L. and Prawel S.P. Jr., Modern Methods of Engineering Computation, McGraw-Hill, Inc., New York, NY. (1996).
[10]許雅雯,「應用類神經網路於結構物損傷即時診斷」,碩士論文,國立成功大學建築研究所,台南 (2004)。
[11]黃李暉,「建築物樓層勁度識別與損壞評估之研究」,碩士論文,國立成功大學土木工程研究所,台南 (2006)。
[12]楊淳皓,「扭轉耦合建築結構受震層間損壞指標」,碩士論文,國立中興大學土木工程研究所,台中 (2006)。
[13]鐘立來、王彥博、楊創盛,「結構動力數值分析之穩定性及精確度」,結構工程第十一卷第四期,第55~66頁,台北 (1996)。
[14]The MathWorks Inc., Simulink Writing S-Function Version 6, MathWorks Inc. 3 Apple Hill Drive Natick, MA. (2004).
[15]The MathWorks Inc., Real-Time Workshop User’s Guide Version 6, MathWorks Inc. 3 Apple Hill Drive Natick, MA. (2006).
[16]The MathWorks Inc., xPC Target User Guide Version 2, MathWorks Inc. 3 Apple Hill Drive Natick, MA. (2006).
[17]李明鴻,「應用快速擬動態試驗技術於線性含斜撐框架動態反應之模擬與試驗」,碩士論文,國立成功大學土木工程研究所,台南 (2006)。
[18]張志強,「建築結構強震監測與系統識別」,碩士論文,國立中興大學土木工程研究所,台中 (2003)。
[19]Chu, S.Y., Soong, T.T., Reinhorn, A.M., Active Hybrid and Semi-Active Structural Control, John Wiley & Sons, Ltd, (2005).
[20]姚昭智、林其璋、洪李陵、朱世禹,「建築物在強震時之反應預估模式(Ⅱ)」,中央氣象局技術報告,編號MOTC-CWB-93-E-12,(2005)。
[21]Lu, L.Y. and Chung, L.L., “Modal Control of Seismic Structures Using Augmented State Matrix”, Earthquake Engineering and Structural Dynamics, Vol. 30, pp. 237-256, (2001).
[22]王惠敏,「強震資料處理軟體系統之設計」,碩士論文,國立台灣大學海洋研究所,台北 (1988)。
[23]林錦隆,「半主動摩擦阻尼器於結構防震應用之探討」,碩士論文,國立高雄第一科技大學營建工程研究所,高雄 (2001)。
[24]羅仕杰,「記憶體共享光纖網路設備於即時擬動態試驗之初步研究」,碩士論文,國立暨南大學土木工程研究所,南投 (2005)。
[25]李森枏,「SAP2000入門與工程上之應用」,科技圖書股份有限公司,台北 (2001)。
[26]Juang, J. N., Applied System Identification, Prentice Hall PTR, (1994).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top