跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘郁仁
研究生(外文):Yu-Jen Pan
論文名稱:光聚合高分子於微流體晶片製作與電動不穩定流於微混合之應用
論文名稱(外文):Application of Photopolymers in Microfluidic Chip Fabrication and Electrokinetic Instability Flow Micromixing
指導教授:楊瑞珍楊瑞珍引用關係
指導教授(外文):Ruey-Jen Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:78
中文關鍵詞:感光性高分子
外文關鍵詞:microfluidicelectroosmotic flowUV resinmicromixingelectrokinetic instability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:2
在過去50年中,由於製造技術與機械工具的發展使得現在的分析技術成為一種具有高自動化與高先進的學科。因此,最近幾年微機電系統製造技術已被廣泛運用於各種生化分析上。在本論文中,我們主要運用感光性高分子聚合物發展一些關於製作微流體晶片的技術,並且利用這些技術去設計與製作微流體晶片進行其相關實驗、分析與討論。主要研究重點分為三項,茲說明如下:
首先,我們嘗試一種感光性高分子聚合物運用在微流體玻璃晶片接合上,去發展一種有別於傳統高溫接合的技術,在室溫下即可完成接合封裝程序。由於此高分子材料是屬於中高黏性的聚合物,因此如何能使此高分子材料能均勻的分佈在晶片間隙而達成晶片的接合,就變成一個重要關鍵的步驟。為此,我們從高分子化學中的溶解參數獲知丙酮是一種能完全溶解此高分子聚合物的溶劑。而此完全混合之溶液藉由毛細力均勻分佈在玻璃晶片的間隙中,進而使用紫外光照射以完成晶片的接合。接著我們對已接合完成的晶片進行各項測試,包括耐壓、電洩漏及抗化學藥劑的測試,其結果皆具有一定程度良好的數據與結果。最後我們比較使用此高分子聚合物接合的晶片與傳統高溫熔合技術所接合的晶片進行實驗比對,實驗結果皆呈現相似的結果。
運用上述發展室溫玻璃晶片接合技術所獲得之概念,我們更進一步嘗試運用此感光性高分子聚合材料發展一套快速、簡易及在一般傳統實驗室中即可完成製作PDMS微流體晶片所需之母模的製作程序。整個母模的製作程序從高分子材料塗佈至玻璃基材表面、到照射紫外光進行曝光和使用丙酮當作顯影液進行顯影程序所需的時間不到40分鐘。接著我們利用此母模製造方式製作不同PDMS微流體晶片進行各項實驗,其實驗結果與各文獻中所提出之實驗或理論分析之結果皆符合。根據Poisson方程式與歐姆電流模式(Ohmic current model),可得淨電荷密度為 ,而當電場強度達到臨界值時,電動不穩定之現象將會發生於微管道中,然而當我們適當的將電導率梯度與流體流動的方向做調整,則在微管道中發生電動不穩定之現象所需之電場強度可降低。利用此簡易、快速製作技術所製造的PDMS微流體晶片證實實驗結果也獲得相同之結論。
最後我們以簡單操作模式控制多重樣品流體(M x N)之電動聚焦及無閥切換(註:M為樣品流數量、N為出口端數量)。其操控原理為:由於玻璃管道之表面電位勢為負電位,根據Helmholtz-Smoluchowski方程式可知電驅動流體之流動方向與電位勢梯度方向同向,流體之流向可藉由電場之控制而被操控,因此在M x N微流體無閥切換裝置上,若要將樣品流操控至所指定之出口管道,只需控制所指定之出口管道具有電位勢梯度存在,其餘出口管則無電位勢梯度存在,則樣品流可輕易地流向所指定之管道。實驗結果顯示藉由此操作模式,樣品流可輕易地被切換至所指定之出口管道。接著我們將上述操控模式與微管道內之電動不穩定現象做整合,嘗試發展具有多重樣品傳輸及具有混合功能之整合性微流體晶片。實驗與數值模擬之結果皆顯示,樣品流可輕易地被切換至所指定之出口管道並在此出口管道發生電動不穩定之現象以進行樣品混合。實驗結果顯示混合效率可在短時間及短距離內被有效地提升。
Recently, MEMS (Micro-Electro-Mechanical-Systems) technology has been a promising approach in various fields. For example, the MEMS have been widely employed for biochemical analysis in recent years. In this dissertation, we focus on novel manufacturing techniques development for microfluidic chip fabrication and application for the investigation of electrokinetically-driven microfluidic devices. This research consists of three parts as expressed in the following:
First, the UV epoxy resin is utilized to bond glass substrates for microfluidic chips. The UV epoxy resin possesses a cationic polymerization character, hence the oxygen does not influence polymerization and consequently there is no need to use a vacuum pump to evacuate the oxygen. The solubility parameter of the acetone solution is similar to UV epoxy resin, and therefore the epoxy dissolves uniformly in the acetone. For this reason, the resin solution can spread uniformly into a gap between substrates under the action of capillary forces. The effect of pressure and chemical reagent had been tested on the microfluidic chip bounded by the UV epoxy resin. Under a pressure of 1.792 ×102 kPa and with various chemical reagents (sodium hydroxide solution, DI-water and hydrochloric acid solutions), the microfluidic chip did not reveal any solution leakages between adhesive interfaces. Currently, the experimental results show no electrical leakage and good sample flow manipulation when comparing the chips made by both the UV epoxy resin bonding and the thermal fusion bonding technique.
Next, we develop a fast and simple technique for the fabrication of UV epoxy resin master moulds for the replication of PDMS-based microfluidic chips. The master mold is produced simply by exposing a layer of UV epoxy resin coating on a glass substrate requiring only 40 minutes or less to produce an epoxy master mould. A series of electrokinetic experiments are performed using PDMS microchips replicated from the current epoxy resin master moulds. The obtained experimental results show good agreement with the theoretical predictions and the experiment results of the previous literatures. According to the Poisson equation and the Ohmic current model, the net charge density can be expressed as , which tells us that the net charge density exists in bulk liquid when the electrical conductivity gradients exist in microchannels, i.e., there is an electrical body force away from the channel wall. At critical electrical field strength, this induced electrical body force will result in an instability flow field. However, with an appropriate alignment of the sample flow and the conductivity gradient, the electrokinetic disturbance can be induced under a lower electrical field strength. From experimental results, we get agreement with the mathematical predictions.
Finally, a manipulation of the electrokinetic multiple sample flows for focusing/valveless switching in an M x N microfluidic chip based on electrokinetic force had been studied. According to the Helmholtz-Smoluchowski equation, we know that flows are driven electrokinetically along the direction of the externally applied electrical potential gradient. This investigation includes two flow manipulations, namely electrokinetic focusing and valve-less flow switching within multi-ported microchannels. Experimental results show the sample can be pre-focused into a specified outlet port. Then, the electrokinetic instability effect is integrated into an M x N microfluidic chip for achieving the sample mixing process. In practice, there is a difference in electrical conductivity between sample flow and sheath flow, i.e., the electrical conductivity gradient exists at the interface between the sample flow and the sheath flow. At the critical electrical field strength, an instability flow field can be induced in an outlet channel. Experimental and numerical simulation results both show the sample can induce an instability phenomenon using the same operation conditions.
Abstract Ⅰ
中文摘要 Ⅲ
Acknowledgments Ⅵ
Table of contents Ⅴ
List of tables Ⅷ
List of figures Ⅸ
Nomenclature ⅩⅣ

Chapter 1 :
INTRODUCTION 1
1.1 MEMS technology for biological applications 1
1.2 Introduction of microfluidic chips 2
1.3 The development of the UV curing resin 3
1.4 Motivation and objectives 4
1.5 The dissertation organization 6

Chapter 2:
GLASS MICROFLUIDIC CHIPS ADHESIVE BONDING METHOD AT ROOM TEMPERATURE 9
2.1 Introduction 9
2.2 Chemicals and materials 11
2.3 Fabrication and experimental details 12
2.3.1 Microfluidic chip fabrication 12
2.3.2 Adhesive bonding 12
2.3.3 Detection system and Measurement 13
2.4 Results and discussion 14
2.4.1 Leakage test 14
2.4.2 The operation of the pre-focusing sample injection chip 15
2.4.3 Re-bonded of the microfluidic chip 16

Chapter 3:
FABRICATION OF UV EPOXY RESIN MASTERS FOR THE REPLICATION OF PDMS-BASED MICROCHIPS 25
3.1 Introduction 25
3.2 UV epoxy resin properties and polymerization mechanisms 26
3.3 Materials and fabrication methods 27
3.3.1 Chemicals and reagents 27
3.3.2 Fabrication of positive epoxy master from negative glass template 27
3.3.3 Fabrication of positive epoxy resin master using UV resin as negative photoresist layer 28
3.3.4 Fabrication of PDMS microchips using epoxy resin embossing master 29
3.3.5 Detection system 29
3.4 Results and discussion 30
3.4.1 UV epoxy resin master 30
3.4.2 Sample focusing experiments 32
3.4.3 Sample flow switching experiments 33
3.4.4 Electrokinetic instability investigations 33

Chapter 4:
APPLICATION OF ELECTROKINETIC INSTABILITY FOR Mixing Enhancement 43
4.1 Introduction 43
4.2 Design and method 45
4.3 Fabrication and experiment 49
4.3.1 Fabrication 50
4.3.2 Experimental setup 50
4.4 Simulation 50
4.5 Results and discussion 52
4.5.1 Focusing/valveless switching of sample flows 52
4.5.2 EKI mixing of samples in outlet channels 53

Chapter 5:
CONCLUSIONS 64
5.1 Dissertation overview 64
5.2 Future work 66

References 68
Curriculum Vitae 76
Publication 76
1.Rocklin, R. D., Ramsey, R. S. and Ramsey, J. M., A microfabricated fluidic device for performing two-dimensional liquid-phase separations, Anal. Chem., 72, 5244-5249, 2000.
2.Dolnik, V., Liu, S. and Jovanovich, S., Capillary electrophoresis on microchip, Electrophoresis, 21, 41-54, 2000.
3.Varpoorte, E., Microfluidic chips for clinical and forensic analysis, Electrophoresis, 23, 677-712, 2002.
4.Arce, L., Kuban, P., Rios, A., Valcarcel, M. and Karlberg, B., On-line ion-exchange preconcentration in a flow injection system coupled to capillary electrophoresis for the direct determination of UV absorbing anions, Anal. Chim. Acta, 390, 39-44, 1999.
5.Collins, G. E. and Lu, Q., Microfabricated capillary electrophoresis sensor for uranium (VI), Anal. Chim. Acta, 436, 181-189, 2001.
6.Khandurina, J., McKnight, T. E., Jacobson, S. C., Waters, L. C., Foote, R. S. and Ramsey, J. M., Integrated system for rapid PCR-based DNA analysis in microfluidic devices, Anal. Chem., 72, 2995-3000, 2000.
7.Khandurina, J., Chován, T. and Guttman, A., micropreparative fraction collection in microfluidic devices, Anal. Chem., 74, 1737-1740, 2002.
8.Hong, J. W., Fujii, T., Seki, M., Yamamoto, T. and Endo, I., Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip, Electrophoresis, 22, 328-.333, 2001.
9.Kruger, J., Singh, K., O’Nell, A., Jackson, C., Morrison, A. and O’Brien, P., Development of a microfluidic device for fluorescence activated cell sorting, J. Micromech. Microeng., 12, 486-494, 2002.
10.Karsten S., Andreas K., Dieter T., Frank G., Karl C. and Markus M., Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis, Anal. Chem., 71, 5430-5435, 1999.
11.Wang J., Rivas G., Cai X., Palecek E., Nielsen P., Shiraishi H., Dontha N., Luo, D., Parrado C., Chicharro M., Farias PAM, Valera FS, Grant DH, Ozsoz M, and Flair M. N., DNA electrochemical biosensors for environmental monitoring. A review, Ana. Chim. Acta, 347, 1-8. 1997.
12.Chen S. H. and Gallo J. M., Use of capillary electrophoresis methods to characterize the pharmacokinetics of antisense drug, Electrophoresis, 19, 2861-2869, 1998.
13.Terry S. C., Jerman J. H. and Angell J. B., A gas chromatographic air analyzer fabricated on s silicon wafer, IEEE Transactions on Electron Devices, ED-26, 12, 1180-1185, 1979.
14.Bassous E. E., Taud H. H. and Kuhn L., Ink jet printing nozzle arrays etched in silicon, Appl. Phys. Lett., 31, 135- 137, 1977.
15.Gravesen P., Branebjerg J. and Jensen O. S., Microfluidics-a review, J. Micromech. Microeng., 3, 168-182, 1993.
16.Petersen K., Biomedical application of MEMS, in IEDM, San Jose, 1996.
17.Harrison D. J., Manz A., Fan Z., Luedi H. and Widmer H. M., Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem., 64, 1926-1932, 1992.
18.Hadd A. G., Raymond D. E., Halliwell J. W., Jacobson S. C. and Ramsey J. M., Microchip device for performing enzyme assays, Anal. Chem., 69, 3407-3412, 1997.
19.Jacobson S. C. and Ramsey J. M., Intergrated microdevice for DNA restriction fragment analysis, Anal. Chem., 68, 720-723, 1996.
20.Woolley A. T. and Mathies R. A., Ultra-high-speed DNA sequencing using capillary electrophoresis chips, Anal. Chem., 67, 3676-3680, 1995.
21.Kheterpal I. and Mathies R. A., Capillary array electrophoresis DNA sequencing, Anal. Chem., 31A-37A, 1999.
22.Water L. C., Jacobson S. C., Kroutchinina N., Khandurina J., Foote R. S. and Ramsey J. M., Microchip device for cell lysis, multiplex PCR amplification and electrophorstic sizing, Anal. Chem., 70, 158-162, 1998.
23.Northrup M. A., Benett B., Hadley D., Landre P., Lehew S., Richards J. and Stratton P., A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers, Anal. Chem., 70, 918-922, 1998.
24.Kopp M., Mello A. D. and Manz A., Chemical amplification: continuous-flow PCR on a chip, science, 280, 1046-1048, 1998.
25.Woolley A. T., Hadley D., Landre P., deMello A. J., Mathies R. A. and Northrup M. A., Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Anal. Chem., 68, 4081-4086, 1996.
26.Dhopeshwarkar R., Li S. A. and Crooks R. M., Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug, Lab Chip, 5, 1148-1154, 2005.
27.Wong P. K., Chen C. Y., Wang T. H. and Ho C. M., Electrokinetic bioprocessor for concentrating cells and molecules, Anal. Chem., 76, 6908-6914. 2004.
28.Leinewber F. C., Eijkel J. C. T., Bomer J. G. and Van den Berg A., Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays, Anal. Chem., 78, 1425-1434. 2006.
29.Chen H., Fang Q., Yin X. F. and Fang Z. L., Microfluidic chip-based liquid–liquid extraction and preconcentration using a subnanoliter-droplet trapping technique, Lab Chip, 5, 719-725, 2005.
30.Thomas C. D., Jacobson S. C. and Ramsey J M., Strategy for repetitive pinched injections on a microfluidic device, Anal. Chem., 76, 6053-6057. 2004.
31.Karlinsey J. M., Monahan J., Marchiarullo D. J., Ferrance J. P. and Landers J. P., Pressure Injection on a Valved Microdevice for Electrophoretic Analysis of Submicroliter Samples, Anal. Chem., 77, 3637-3643. 2005.
32.Tabuchi M. and Baba Y., A triple-injection method for microchip electrophoresis, Electrophoresis, 26, 376-382, 2005.
33.Munson M. S. and Yager P., Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer, Anal. Chim. Acta, 507, 63-71, 2004.
34.Simonnet C. and Groisman A., Chaotic mixing in a steady flow in a microchannel, Phys. Rev. Lett., 94, 134501(1-4), 2005.
35.Huang L. R., Cox E. C., Austin R. H. and Sturm J. C., Continuous particle separation through deterministic lateral displacement, Science, 304, 987-990, 2004.
36.Pamme N. and Manz A., On-Chip Free-Flow Magnetophoresis: continuous flow separation of magnetic particles and agglomerates, Anal. Chem., 76, 7250-7256. 2004.
37.Kang K. H., Kang Y., Xuan X. and Li D., Continuous separation of microparticles by size with Direct current-dielectrophoresis, Electrophoresis, 27, 694-702, 2006.
38.Schulze P., Ludwig M., Kohler F. and Belder D., Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis, Anal. Chem., 77, 1325-1329. 2005.
39.Chronis N. and Lee L. P., Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall, Lab Chip, 4, 719-725, 2004.
40.Kang S. H., Lee S. and Yeung E. S., Direct observation of single native DNA molecules in a microchannel by differential interference contrast microscopy, Anal. Chem., 76, 4459-4464. 2004.
41.Kuban P. and Hauser P. C., Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis, Electrophoresis, 26, 3169-3178, 2005.
42.Reich C., Hocherin M. B., Krause B. and Nickel B., A microfluidic setup for studies of solid-liquid interfaces using x-ray reflectivity and fluorescence microscopy, Rev. Sci. Instrum., 76, 095103(1-7), 2005.
43.Manz A., Effenhauser C. S., Burggraf N., Harrison D. J., Seiler K. and Fluri J., Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems, J. Micromech. Microeng., 4, 257-265, 1994.
44.Li C., Nagarajan R. M., Chiang C. C. and Cooper S. L., Synthesis and characterization of radiation curable polyurethanes containing pendant acrylate groups, Polym. Eng. Sci., 26, 1442-1450, 1986.
45.Ando M. and Uryu T., Synthesis of polymer materials by low energy electron beam. III. Effects of polymerization temperature in EB solid-state polymerization of semicrystalline urethane-acrylate film, J. Appl. Polym. Sci., 35, 397-406, 1988.
46.Chiang W. Y. and Chan S. C, Preparation and properties of photocurable unsaturated oligoester acrylourethanes, J. Appl. Polym. Sci., 34, 127-141. 1987.
47.Chiang W. Y. and Shu W. J., Preparation and properties of UV-curable poly(dimethylsiloxane) urethane acrylate. II. Property-structure/molecular weight relationships, J. Appl. Polym. Sci., 36, 1889-1907, 1988.
48.Takiguchi R. and Uryu T., Polymeric reaction of polymer-monomer system irradiated by low energy electron beam. III. Adhesive property of pressure sensitive adhesive, J. Appl. Polym. Sci., 31, 2083-2097, 1986.
49.Kimura T. and Yamakawa S., Effects of chemical structure on low-temperature modulus for UV-curable polybutadiene acrylates as an optical fiber coating material, J. Poly. Sci.: Poly. Chem., 24, 1161-1171, 1986.
50.Nishikubo T., Uchida J., Matsui K. and Iizawa T., Study of polymeric photosensitizer. 2. Syntheses of multifunctional polymeric photosensitizers containing a pendant nitroaryl group and a quaternary phosphonium salt and their application to the photochemical reaction of potassium cinnamate. Macromolecules, 21, 1583-1589, 1988.
51.Morgan C. R, Magnotta F. and Ketley A. D., Thiol/ene photocurable polymers, J. Poly. Sci.: Poly. Chem., 15, 627-632, 1977.
52.Chiang W. Y. and Chan S. C., Preparation and properties of UV-autocurable BTDA-based polyurethane methacrylates, J. Appl. Polym. Sci., 37, 1669-1683, 1989.
53.Chiang W. Y. and Chan S. C., Preparation and properties of UV-autocurable BTDA-based polyester multiacrylates. I. Effects of acrylic functionality and polyol molecular weight, J. Appl. Polym. Sci., 41, 2971-2985, 1990.
54.Chiang W. Y. and Chan S. C., Preparation and properties of UV-autocurable BTDA-based epoxy-multiacrylate resins. Effects of the degree of polymerization and the epoxy type, J. Appl. Polym. Sci., 43, 1827-1836, 1991.
55.Jacobson S. C. and Ramsey J. M., Electrokinetic focusing in microfabricated channel structures, Anal. Chem., 69, 3212–3217 1997.
56.Trah H. P., Baumann. H., Döring C., Goebel H., Grauer T. and Mettner M., Micromachined valve with hydraulically, actuated membrane, subsequent to a thermoelectrically controlled bimorph cantilever, Sen. Actuators A, 39, 169-176, 1993.
57.Blankenstein G. and Larsen U. D., Modular concept of a laboratory on a chip for chemical and biochemical analysis, Biosens. Bioelectron., 13, 427-438, 1998.
58.Lee G. B., Hung C. I. Ke B. J., Huang G. R. and Hwei B. H., Micromachined pre-focused 1×N flow switches for continuous sample injection, J. Micromech. Microeng., 11, 567-573, 2001.
59.Lee G. B., Hwei B. H. and Huang G. R., Micromachined pre-focused M×N flow switches for continuous multi-sample injection, J. Micromech. Microeng., 11, 654-661, 2001.
60.Fu L. M., Yang R. J., Lee G. B. and Pan Y. J., Multiple injection techniques for microfluidic sample handling, Electrophoresis, 24, 3026-3032, 2003.
61.Pan Y. J., Lin J. J., Luo W. J. and Yang R. J., Sample flow switching techniques on microfluidic chips, Biosens. Bioelectron., 21, 1644-1648, 2006.
62.Hertzog D. E., Ivorra B., Mohammadi B., Bakajin O. and Santiago J. G., Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics, Anal. Chem., 78, 4299-4306, 2006.
63.Wang H., Iovenitti P., Harvey E. and Masood S., Numerical investigation of mixing in microchannels with patterned grooves J. Micromech. Microeng., 13, 801-808, 2003.
64.Ericson D. and Li D., Influence of surface heterogeneity on electrokinetically driven microfluidic mixing, Langmuir, 18, 1883-1892, 2002.
65.Oddy M. H., Santiago J. G. and Mikkelsen J. C., Electrokinetic instability micromixing, Anal. Chem., 73, 5822-5832, 2001
66.Chen C. H., Lin H., Lele S. K. and Santiago J. G., Convective and absolute electrokinetic instability with conductivity gradients, J. Fluid Mech., 524, 263-303, 2005.
67.Probstein R. F., Physicochemical Hydrodynamics: An introduction (New York: Wiely), 1994.
68.Posner J. D. and Santiago J. G., Convective instability of electrokinetic flows in a cross-shaped microchannel, J. Fluid Mech., 555, 1-42, 2006.
69.Park L., Shin S. M., Huh K. Y. and Kang I. S., Application of electrokinetic instability for enhanced mixing in various micro-T-channel geometries, Phys. Fluids., 17, 118101(1-4), 2005.
70.Johnson T. J., Ross D. and Locascio L. E., Rapid microfluidic mixing. Anal. Chem., 74, 45-51, 2002.
71.Lin C. H., Lee G. B., Lin Y. H. and Chang G. L., A fast prototyping process for fabrication of microfluidic systems on soda-lime glass, J. Micromech. Microeng., 11 726-732, 2001.
72.Manz A., Graber N. and Widmer H. M., Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sen. Actuators B, 1, 244-248, 1990.
73.Kirby B. J., Reichmuth D. S., Renzi R. F., Shepodd T. J. and Wiedenman B. J., Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements, Lab Chip, 5, 184-190, 2005.
74.Berthold A., Nicola L., Sarro L. P. and Vellekoop M. J., Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers, Sen. Actuators A, 82, 224-228, 2000.
75.Schlautmann S., Wensink H. and Schasfoort R. B. M., Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors, J. Micromech. Microeng., 11, 386-389, 2001.
76.Chiem N., Lockyear-Shultz Anderson L. P., Skinner C. and Harrison D. J., Room temperature bonding of micromachined glass devices for capillary electrophoresis, Sen. Actuator B, 63, 147-152, 2000.
77.Sayah A., Solignac D., Cueni T. and Gijs M. A. M., Development of novel low temperature bonding technologies for microchip chemical analysis applications, Sen Actuators A, 84, 103-108, 2000.
78.Mescheder U. M., Alavi M., Hiltmann K., Lietzau Ch., Nachtigall Ch. and Sandmaier H., Local laser bonding for low temperature budget, Sen. Actuators A, 97-98, 422-427, 2002.
79.Mukhopadhyay R., When microfluidic devices go bad Anal. Chem., 77, 429A-32A, 2005.
80.Boiko Y. and Prud,home R. E., Bonding at symmetric polymer/polymer interfaces below the glass transition temperature, Macromolecules, 30, 3708-3710, 1997.
81.Yang Y., Zeng C. and Lee L. J., Three-dimensional assembly of polymer microstructures at low temperature, Adv. Mater., 16, 560-564, 2004.
82.Wu H., Huang B. and Zare R. H., Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding, Lab Chip, 5, 1393-1398, 2005.
83.Blanco F. J., Agirregabiria M., Garcia J., Berganzo J., Tijero M., Arroyo M. T., Ruano J. M., Aramburu I. and Mayora K., Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding, J. Micromech. Microeng., 14, 1047-1056, 2004.
84.Oberhammer J., Niklaus F. and Stemme G., Sealing of adhesive bonded devices on wafer level, Sen. Actuators A, 110, 407-412, 2004.
85.Jackman R. J., Floyd T. M., Ghodssi R., Schmidt M. A. and Jensen K. F., Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy, J. Micromech. Microeng., 11, 263-269, 2001.
86.Huang Z., Sander J. C., Dunsmor C., Ahmadzadeh H. and Landers J. P., A method for UV-bonding in the fabrication of glass electrophoretic microchips, Electrophoresis, 22, 3924-3929, 2001.
87.Schlautmann S., Bessslink G. A. J., Prabhu G Radhakrishna and Schasfoort R. B. M., Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers, J. Micromech. Microeng., 13, S81-S84, 2003.
88.Alarie J. P., Jacobson S. C. and Ramsey J. M., Electrophoretic injection bias in a microchip valving scheme, Electrophoresis, 22, 312-317, 2001.
89.Grodzinski P., Liu R. H., Chen B., Blackwell J., Liu Y., Rhine D., Smekal T., Ganser D., Romero C., Yu H., Chan T. and Kroutchinina N., Development of plastic microfluidic devices for sample preparation, Biomedical Microdevices, 3, 275-283, 2001.
90.Yamahata C., Lotto C., Al-Assaf E. and Gijs M. A. M., A PMMA valveless micropump using electromagnetic actuation, Microfluidics Nanofluidics, 1, 197-207, 2005.
91.Nguyen N. T. and Huang X., Modelling, fabrication and characterization of a polymeric micromixer based on sequential segmentation, Biomedical Microdevices, 8, 133-139, 2006.
92.Stiles T, Fallon R., Vestad T., Oakey J., Marr D. W. M., Squier J. and Jimenez R., Hydrodynamic focusing for vacuum-pumped microfluidics, Microfluidics Nanofluidics, 1, 280-283, 2005.
93.Wu Z. and Nguyen N. T., Rapid mixing using two-phase hydraulic focusing in microchannels, Biomedical Microdevices, 7, 13-20, 2005.
94.Saarela V., Franssila S., Tuomikoski S., Marttila S., Östman P., Sikanen T., Kotiaho T. and Kostiainen R., Re-usable multi-inlet PDMS fluidic connector, Sen. Actuators B, 114, 552-557, 2006.
95.Russo A. P., Apoga D., Dowell N., Shain W., Turner A. M. P., Craighead H. G., Hoch H. C. and Turner J. N., Microfabricated plastic devices from silicon using soft intermediates, Biomedical Microdevices, 4, 277-283, 2002.
96.McCormick R. M., Nelson R. J., A.-Amigo G. M., Benvegnu D. J. and Hooper H. H., Microchannel Electrophoretic Separations of DNA in injection-molded plastic substrates, Analytical Chemistry, 69, 2626-2630, 1997.
97.Kancharla V. V. and Chen S., Fabrication of biodegradable polymeric micro-devices using laser micromachining, Biomedical Microdevices, 4, 105-109, 2002.
98.Pan Y. J. and Yang R. J., A glass microfluidic chip adhesive bonding method at room temperature, J. Micromech. Microeng., 16, 2666-2672, 2006.
99.Chaudhury M. K. and Whitesides G. M., Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives, Langmuir, 7, 1013-1025, 1991.
100.Fu L. M, Yang R. J, Lin C. H., Pan Y. J. and Lee G. B., Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection, Anal. Chim. Acta, 507, 163-169, 2004.
101.Tan Y. C., Cristini V. and Lee A. P., Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sen. Actuators B, 114, 350-356, 2006.
102.Fütterer C., Minc N., Bormuth V., Codarbox J. H., Laval P., Rossier J. and Viovy L. L., Injection and flow control system for microchannels, Lab Chip, 4, 351-356, 2004.
103.Tresset G. and Takeuchi S., A microfluidic device for electrofusion of biological vesicles, Biomedical Microdevices, 6, 213-218, 2004.
104.Yang R. J., Chang C. C., Huang S. B. and Lee G. B., A new focusing model and switching approach for electrokinetic flow inside microchannels, J. Micromech. Microeng., 15, 2141-2148, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top