|
1.Rocklin, R. D., Ramsey, R. S. and Ramsey, J. M., A microfabricated fluidic device for performing two-dimensional liquid-phase separations, Anal. Chem., 72, 5244-5249, 2000. 2.Dolnik, V., Liu, S. and Jovanovich, S., Capillary electrophoresis on microchip, Electrophoresis, 21, 41-54, 2000. 3.Varpoorte, E., Microfluidic chips for clinical and forensic analysis, Electrophoresis, 23, 677-712, 2002. 4.Arce, L., Kuban, P., Rios, A., Valcarcel, M. and Karlberg, B., On-line ion-exchange preconcentration in a flow injection system coupled to capillary electrophoresis for the direct determination of UV absorbing anions, Anal. Chim. Acta, 390, 39-44, 1999. 5.Collins, G. E. and Lu, Q., Microfabricated capillary electrophoresis sensor for uranium (VI), Anal. Chim. Acta, 436, 181-189, 2001. 6.Khandurina, J., McKnight, T. E., Jacobson, S. C., Waters, L. C., Foote, R. S. and Ramsey, J. M., Integrated system for rapid PCR-based DNA analysis in microfluidic devices, Anal. Chem., 72, 2995-3000, 2000. 7.Khandurina, J., Chován, T. and Guttman, A., micropreparative fraction collection in microfluidic devices, Anal. Chem., 74, 1737-1740, 2002. 8.Hong, J. W., Fujii, T., Seki, M., Yamamoto, T. and Endo, I., Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip, Electrophoresis, 22, 328-.333, 2001. 9.Kruger, J., Singh, K., O’Nell, A., Jackson, C., Morrison, A. and O’Brien, P., Development of a microfluidic device for fluorescence activated cell sorting, J. Micromech. Microeng., 12, 486-494, 2002. 10.Karsten S., Andreas K., Dieter T., Frank G., Karl C. and Markus M., Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis, Anal. Chem., 71, 5430-5435, 1999. 11.Wang J., Rivas G., Cai X., Palecek E., Nielsen P., Shiraishi H., Dontha N., Luo, D., Parrado C., Chicharro M., Farias PAM, Valera FS, Grant DH, Ozsoz M, and Flair M. N., DNA electrochemical biosensors for environmental monitoring. A review, Ana. Chim. Acta, 347, 1-8. 1997. 12.Chen S. H. and Gallo J. M., Use of capillary electrophoresis methods to characterize the pharmacokinetics of antisense drug, Electrophoresis, 19, 2861-2869, 1998. 13.Terry S. C., Jerman J. H. and Angell J. B., A gas chromatographic air analyzer fabricated on s silicon wafer, IEEE Transactions on Electron Devices, ED-26, 12, 1180-1185, 1979. 14.Bassous E. E., Taud H. H. and Kuhn L., Ink jet printing nozzle arrays etched in silicon, Appl. Phys. Lett., 31, 135- 137, 1977. 15.Gravesen P., Branebjerg J. and Jensen O. S., Microfluidics-a review, J. Micromech. Microeng., 3, 168-182, 1993. 16.Petersen K., Biomedical application of MEMS, in IEDM, San Jose, 1996. 17.Harrison D. J., Manz A., Fan Z., Luedi H. and Widmer H. M., Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem., 64, 1926-1932, 1992. 18.Hadd A. G., Raymond D. E., Halliwell J. W., Jacobson S. C. and Ramsey J. M., Microchip device for performing enzyme assays, Anal. Chem., 69, 3407-3412, 1997. 19.Jacobson S. C. and Ramsey J. M., Intergrated microdevice for DNA restriction fragment analysis, Anal. Chem., 68, 720-723, 1996. 20.Woolley A. T. and Mathies R. A., Ultra-high-speed DNA sequencing using capillary electrophoresis chips, Anal. Chem., 67, 3676-3680, 1995. 21.Kheterpal I. and Mathies R. A., Capillary array electrophoresis DNA sequencing, Anal. Chem., 31A-37A, 1999. 22.Water L. C., Jacobson S. C., Kroutchinina N., Khandurina J., Foote R. S. and Ramsey J. M., Microchip device for cell lysis, multiplex PCR amplification and electrophorstic sizing, Anal. Chem., 70, 158-162, 1998. 23.Northrup M. A., Benett B., Hadley D., Landre P., Lehew S., Richards J. and Stratton P., A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers, Anal. Chem., 70, 918-922, 1998. 24.Kopp M., Mello A. D. and Manz A., Chemical amplification: continuous-flow PCR on a chip, science, 280, 1046-1048, 1998. 25.Woolley A. T., Hadley D., Landre P., deMello A. J., Mathies R. A. and Northrup M. A., Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Anal. Chem., 68, 4081-4086, 1996. 26.Dhopeshwarkar R., Li S. A. and Crooks R. M., Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug, Lab Chip, 5, 1148-1154, 2005. 27.Wong P. K., Chen C. Y., Wang T. H. and Ho C. M., Electrokinetic bioprocessor for concentrating cells and molecules, Anal. Chem., 76, 6908-6914. 2004. 28.Leinewber F. C., Eijkel J. C. T., Bomer J. G. and Van den Berg A., Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays, Anal. Chem., 78, 1425-1434. 2006. 29.Chen H., Fang Q., Yin X. F. and Fang Z. L., Microfluidic chip-based liquid–liquid extraction and preconcentration using a subnanoliter-droplet trapping technique, Lab Chip, 5, 719-725, 2005. 30.Thomas C. D., Jacobson S. C. and Ramsey J M., Strategy for repetitive pinched injections on a microfluidic device, Anal. Chem., 76, 6053-6057. 2004. 31.Karlinsey J. M., Monahan J., Marchiarullo D. J., Ferrance J. P. and Landers J. P., Pressure Injection on a Valved Microdevice for Electrophoretic Analysis of Submicroliter Samples, Anal. Chem., 77, 3637-3643. 2005. 32.Tabuchi M. and Baba Y., A triple-injection method for microchip electrophoresis, Electrophoresis, 26, 376-382, 2005. 33.Munson M. S. and Yager P., Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer, Anal. Chim. Acta, 507, 63-71, 2004. 34.Simonnet C. and Groisman A., Chaotic mixing in a steady flow in a microchannel, Phys. Rev. Lett., 94, 134501(1-4), 2005. 35.Huang L. R., Cox E. C., Austin R. H. and Sturm J. C., Continuous particle separation through deterministic lateral displacement, Science, 304, 987-990, 2004. 36.Pamme N. and Manz A., On-Chip Free-Flow Magnetophoresis: continuous flow separation of magnetic particles and agglomerates, Anal. Chem., 76, 7250-7256. 2004. 37.Kang K. H., Kang Y., Xuan X. and Li D., Continuous separation of microparticles by size with Direct current-dielectrophoresis, Electrophoresis, 27, 694-702, 2006. 38.Schulze P., Ludwig M., Kohler F. and Belder D., Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis, Anal. Chem., 77, 1325-1329. 2005. 39.Chronis N. and Lee L. P., Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall, Lab Chip, 4, 719-725, 2004. 40.Kang S. H., Lee S. and Yeung E. S., Direct observation of single native DNA molecules in a microchannel by differential interference contrast microscopy, Anal. Chem., 76, 4459-4464. 2004. 41.Kuban P. and Hauser P. C., Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis, Electrophoresis, 26, 3169-3178, 2005. 42.Reich C., Hocherin M. B., Krause B. and Nickel B., A microfluidic setup for studies of solid-liquid interfaces using x-ray reflectivity and fluorescence microscopy, Rev. Sci. Instrum., 76, 095103(1-7), 2005. 43.Manz A., Effenhauser C. S., Burggraf N., Harrison D. J., Seiler K. and Fluri J., Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems, J. Micromech. Microeng., 4, 257-265, 1994. 44.Li C., Nagarajan R. M., Chiang C. C. and Cooper S. L., Synthesis and characterization of radiation curable polyurethanes containing pendant acrylate groups, Polym. Eng. Sci., 26, 1442-1450, 1986. 45.Ando M. and Uryu T., Synthesis of polymer materials by low energy electron beam. III. Effects of polymerization temperature in EB solid-state polymerization of semicrystalline urethane-acrylate film, J. Appl. Polym. Sci., 35, 397-406, 1988. 46.Chiang W. Y. and Chan S. C, Preparation and properties of photocurable unsaturated oligoester acrylourethanes, J. Appl. Polym. Sci., 34, 127-141. 1987. 47.Chiang W. Y. and Shu W. J., Preparation and properties of UV-curable poly(dimethylsiloxane) urethane acrylate. II. Property-structure/molecular weight relationships, J. Appl. Polym. Sci., 36, 1889-1907, 1988. 48.Takiguchi R. and Uryu T., Polymeric reaction of polymer-monomer system irradiated by low energy electron beam. III. Adhesive property of pressure sensitive adhesive, J. Appl. Polym. Sci., 31, 2083-2097, 1986. 49.Kimura T. and Yamakawa S., Effects of chemical structure on low-temperature modulus for UV-curable polybutadiene acrylates as an optical fiber coating material, J. Poly. Sci.: Poly. Chem., 24, 1161-1171, 1986. 50.Nishikubo T., Uchida J., Matsui K. and Iizawa T., Study of polymeric photosensitizer. 2. Syntheses of multifunctional polymeric photosensitizers containing a pendant nitroaryl group and a quaternary phosphonium salt and their application to the photochemical reaction of potassium cinnamate. Macromolecules, 21, 1583-1589, 1988. 51.Morgan C. R, Magnotta F. and Ketley A. D., Thiol/ene photocurable polymers, J. Poly. Sci.: Poly. Chem., 15, 627-632, 1977. 52.Chiang W. Y. and Chan S. C., Preparation and properties of UV-autocurable BTDA-based polyurethane methacrylates, J. Appl. Polym. Sci., 37, 1669-1683, 1989. 53.Chiang W. Y. and Chan S. C., Preparation and properties of UV-autocurable BTDA-based polyester multiacrylates. I. Effects of acrylic functionality and polyol molecular weight, J. Appl. Polym. Sci., 41, 2971-2985, 1990. 54.Chiang W. Y. and Chan S. C., Preparation and properties of UV-autocurable BTDA-based epoxy-multiacrylate resins. Effects of the degree of polymerization and the epoxy type, J. Appl. Polym. Sci., 43, 1827-1836, 1991. 55.Jacobson S. C. and Ramsey J. M., Electrokinetic focusing in microfabricated channel structures, Anal. Chem., 69, 3212–3217 1997. 56.Trah H. P., Baumann. H., Döring C., Goebel H., Grauer T. and Mettner M., Micromachined valve with hydraulically, actuated membrane, subsequent to a thermoelectrically controlled bimorph cantilever, Sen. Actuators A, 39, 169-176, 1993. 57.Blankenstein G. and Larsen U. D., Modular concept of a laboratory on a chip for chemical and biochemical analysis, Biosens. Bioelectron., 13, 427-438, 1998. 58.Lee G. B., Hung C. I. Ke B. J., Huang G. R. and Hwei B. H., Micromachined pre-focused 1×N flow switches for continuous sample injection, J. Micromech. Microeng., 11, 567-573, 2001. 59.Lee G. B., Hwei B. H. and Huang G. R., Micromachined pre-focused M×N flow switches for continuous multi-sample injection, J. Micromech. Microeng., 11, 654-661, 2001. 60.Fu L. M., Yang R. J., Lee G. B. and Pan Y. J., Multiple injection techniques for microfluidic sample handling, Electrophoresis, 24, 3026-3032, 2003. 61.Pan Y. J., Lin J. J., Luo W. J. and Yang R. J., Sample flow switching techniques on microfluidic chips, Biosens. Bioelectron., 21, 1644-1648, 2006. 62.Hertzog D. E., Ivorra B., Mohammadi B., Bakajin O. and Santiago J. G., Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics, Anal. Chem., 78, 4299-4306, 2006. 63.Wang H., Iovenitti P., Harvey E. and Masood S., Numerical investigation of mixing in microchannels with patterned grooves J. Micromech. Microeng., 13, 801-808, 2003. 64.Ericson D. and Li D., Influence of surface heterogeneity on electrokinetically driven microfluidic mixing, Langmuir, 18, 1883-1892, 2002. 65.Oddy M. H., Santiago J. G. and Mikkelsen J. C., Electrokinetic instability micromixing, Anal. Chem., 73, 5822-5832, 2001 66.Chen C. H., Lin H., Lele S. K. and Santiago J. G., Convective and absolute electrokinetic instability with conductivity gradients, J. Fluid Mech., 524, 263-303, 2005. 67.Probstein R. F., Physicochemical Hydrodynamics: An introduction (New York: Wiely), 1994. 68.Posner J. D. and Santiago J. G., Convective instability of electrokinetic flows in a cross-shaped microchannel, J. Fluid Mech., 555, 1-42, 2006. 69.Park L., Shin S. M., Huh K. Y. and Kang I. S., Application of electrokinetic instability for enhanced mixing in various micro-T-channel geometries, Phys. Fluids., 17, 118101(1-4), 2005. 70.Johnson T. J., Ross D. and Locascio L. E., Rapid microfluidic mixing. Anal. Chem., 74, 45-51, 2002. 71.Lin C. H., Lee G. B., Lin Y. H. and Chang G. L., A fast prototyping process for fabrication of microfluidic systems on soda-lime glass, J. Micromech. Microeng., 11 726-732, 2001. 72.Manz A., Graber N. and Widmer H. M., Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sen. Actuators B, 1, 244-248, 1990. 73.Kirby B. J., Reichmuth D. S., Renzi R. F., Shepodd T. J. and Wiedenman B. J., Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements, Lab Chip, 5, 184-190, 2005. 74.Berthold A., Nicola L., Sarro L. P. and Vellekoop M. J., Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers, Sen. Actuators A, 82, 224-228, 2000. 75.Schlautmann S., Wensink H. and Schasfoort R. B. M., Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors, J. Micromech. Microeng., 11, 386-389, 2001. 76.Chiem N., Lockyear-Shultz Anderson L. P., Skinner C. and Harrison D. J., Room temperature bonding of micromachined glass devices for capillary electrophoresis, Sen. Actuator B, 63, 147-152, 2000. 77.Sayah A., Solignac D., Cueni T. and Gijs M. A. M., Development of novel low temperature bonding technologies for microchip chemical analysis applications, Sen Actuators A, 84, 103-108, 2000. 78.Mescheder U. M., Alavi M., Hiltmann K., Lietzau Ch., Nachtigall Ch. and Sandmaier H., Local laser bonding for low temperature budget, Sen. Actuators A, 97-98, 422-427, 2002. 79.Mukhopadhyay R., When microfluidic devices go bad Anal. Chem., 77, 429A-32A, 2005. 80.Boiko Y. and Prud,home R. E., Bonding at symmetric polymer/polymer interfaces below the glass transition temperature, Macromolecules, 30, 3708-3710, 1997. 81.Yang Y., Zeng C. and Lee L. J., Three-dimensional assembly of polymer microstructures at low temperature, Adv. Mater., 16, 560-564, 2004. 82.Wu H., Huang B. and Zare R. H., Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding, Lab Chip, 5, 1393-1398, 2005. 83.Blanco F. J., Agirregabiria M., Garcia J., Berganzo J., Tijero M., Arroyo M. T., Ruano J. M., Aramburu I. and Mayora K., Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding, J. Micromech. Microeng., 14, 1047-1056, 2004. 84.Oberhammer J., Niklaus F. and Stemme G., Sealing of adhesive bonded devices on wafer level, Sen. Actuators A, 110, 407-412, 2004. 85.Jackman R. J., Floyd T. M., Ghodssi R., Schmidt M. A. and Jensen K. F., Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy, J. Micromech. Microeng., 11, 263-269, 2001. 86.Huang Z., Sander J. C., Dunsmor C., Ahmadzadeh H. and Landers J. P., A method for UV-bonding in the fabrication of glass electrophoretic microchips, Electrophoresis, 22, 3924-3929, 2001. 87.Schlautmann S., Bessslink G. A. J., Prabhu G Radhakrishna and Schasfoort R. B. M., Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers, J. Micromech. Microeng., 13, S81-S84, 2003. 88.Alarie J. P., Jacobson S. C. and Ramsey J. M., Electrophoretic injection bias in a microchip valving scheme, Electrophoresis, 22, 312-317, 2001. 89.Grodzinski P., Liu R. H., Chen B., Blackwell J., Liu Y., Rhine D., Smekal T., Ganser D., Romero C., Yu H., Chan T. and Kroutchinina N., Development of plastic microfluidic devices for sample preparation, Biomedical Microdevices, 3, 275-283, 2001. 90.Yamahata C., Lotto C., Al-Assaf E. and Gijs M. A. M., A PMMA valveless micropump using electromagnetic actuation, Microfluidics Nanofluidics, 1, 197-207, 2005. 91.Nguyen N. T. and Huang X., Modelling, fabrication and characterization of a polymeric micromixer based on sequential segmentation, Biomedical Microdevices, 8, 133-139, 2006. 92.Stiles T, Fallon R., Vestad T., Oakey J., Marr D. W. M., Squier J. and Jimenez R., Hydrodynamic focusing for vacuum-pumped microfluidics, Microfluidics Nanofluidics, 1, 280-283, 2005. 93.Wu Z. and Nguyen N. T., Rapid mixing using two-phase hydraulic focusing in microchannels, Biomedical Microdevices, 7, 13-20, 2005. 94.Saarela V., Franssila S., Tuomikoski S., Marttila S., Östman P., Sikanen T., Kotiaho T. and Kostiainen R., Re-usable multi-inlet PDMS fluidic connector, Sen. Actuators B, 114, 552-557, 2006. 95.Russo A. P., Apoga D., Dowell N., Shain W., Turner A. M. P., Craighead H. G., Hoch H. C. and Turner J. N., Microfabricated plastic devices from silicon using soft intermediates, Biomedical Microdevices, 4, 277-283, 2002. 96.McCormick R. M., Nelson R. J., A.-Amigo G. M., Benvegnu D. J. and Hooper H. H., Microchannel Electrophoretic Separations of DNA in injection-molded plastic substrates, Analytical Chemistry, 69, 2626-2630, 1997. 97.Kancharla V. V. and Chen S., Fabrication of biodegradable polymeric micro-devices using laser micromachining, Biomedical Microdevices, 4, 105-109, 2002. 98.Pan Y. J. and Yang R. J., A glass microfluidic chip adhesive bonding method at room temperature, J. Micromech. Microeng., 16, 2666-2672, 2006. 99.Chaudhury M. K. and Whitesides G. M., Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives, Langmuir, 7, 1013-1025, 1991. 100.Fu L. M, Yang R. J, Lin C. H., Pan Y. J. and Lee G. B., Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection, Anal. Chim. Acta, 507, 163-169, 2004. 101.Tan Y. C., Cristini V. and Lee A. P., Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sen. Actuators B, 114, 350-356, 2006. 102.Fütterer C., Minc N., Bormuth V., Codarbox J. H., Laval P., Rossier J. and Viovy L. L., Injection and flow control system for microchannels, Lab Chip, 4, 351-356, 2004. 103.Tresset G. and Takeuchi S., A microfluidic device for electrofusion of biological vesicles, Biomedical Microdevices, 6, 213-218, 2004. 104.Yang R. J., Chang C. C., Huang S. B. and Lee G. B., A new focusing model and switching approach for electrokinetic flow inside microchannels, J. Micromech. Microeng., 15, 2141-2148, 2005.
|