跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖偉帆
研究生(外文):Wei-Fan Liao
論文名稱:ZnS/Ag/ZnS薄膜應用於上發光有機發光元件之探討
論文名稱(外文):The study of ZnS/Ag/ZnS thin film for top-emission organic light emitting diodes
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Chau-Nan Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:105
中文關鍵詞:上發光有機發光元件
外文關鍵詞:ZnS/Ag/ZnSTop-emissionOLED
相關次數:
  • 被引用被引用:1
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要為上陰極發光有機發光元件的製作,上陰極電極之設計方式採用半透明金屬薄膜,再加上ZnS/Ag/ZnS三層結構,因為全部材料都可採用熱蒸鍍的方式鍍膜,這樣的設計能避免製作氧化物透明導電膜的時候,電漿傷害底下有機層的問題,且讓光能順利的耦合至外部。因為Ag的功函數與有機層HOMO能階之間的能障較大,我們在電洞注入層中加入P-型摻雜層F4-TCNQ,有效增加電洞注入能力。當上陰極結構為Al/ZnS/Ag/ZnS,各厚度為17/37/8/37nm時,元件結構為
Ag/CuPc:F4-TCNQ/NPB/Alq3/BCP/LiF/Al/ZnS/Ag/ZnS,元件在13V時,元件最大亮度為20000 cd/m2,元件的電流功率為2.6 cd/A。此外,我們更進一步將Al厚度降低至7 nm,上陰極結構一樣為Al/ZnS/Ag/ZnS,當各層厚度為7/37/15/37nm時,元件在15V時,元件最大亮度為31000 cd/m2,元件的電流功率為5.6 cd/A,因為Ag 厚度15 nm所構成的薄膜可提供較佳的光學性質與電性,同時也可以有效提供陰極的電性,使電子注入量增加而使其元件發光效率提升。在反射陽極Ag的表面上,利用熱蒸鍍氧化鎳薄膜可以有效改善Ag表面的功函數,因為氧化鎳薄膜的功函數高達 5.0 e.V,有效降低與有機層間的能障,增加電洞注入,元件起始電壓也降到3 V左右。
This subject focused on the fabrication of top-cathode emission organic light emitting diodes. To make use of the semi-transparent metal is our design for the top-cathode and utilize ZnS/Ag/ZnS multilayer structure as top-capping layer. All organic layers and electrodes can fabricate by thermal evaporation. The energy barrier between the work function of Ag anode and the HOMO of the organic material was high, so we doped F4-TCNQ into the hole-injection layer(CuPc) to enhance the amount of hole injection.
Ag/CuPc:F4-TCNQ/NPB/Alq3/BCP/LiF/Al/ZnS/Ag/ZnS was device structure, the maximum brightness of 20000cd/m2 was obtained at 13V, maximum current efficiency was 2.6 cd/A with the cathode thickness was 17/37/8/37 nm individually. We tried to lower the Al thickness from 17nm to 7nm, the cathode with a structure of Al/ZnS/Ag/ZnS and 7/37/15/37 nm respectively was fabricated. The device structure was the same with above, maximum brightness of 31000cd/m2 was obtained at 15V, maximum current efficiency was 5.6 cd/A. When Ag thickness was adjusted to 15 nm can increase the amount of electron injection effectively and at the same time, the efficiency of device was raised because of the device had much amount of electron.
We modified the surface work function of reflective anode Ag with NiO by thermal evaporation. NiO was a high work function material. The work function of NiO was 5.0 e.V, it can lower the barrier between the anode and organic layer to increase the amount of hole injection. The turn-on voltage of the device reduced to 3 V.
中文摘要……………………………………………………...... Ⅰ
英文摘要.............................................. Ⅱ
誌謝………………………........……………………………… Ⅲ
目錄.................................................. Ⅴ
表目錄................................................ Ⅹ
圖目錄………………………….…………………………....... XI

第一章 緒論…………………………………………………....1
1-1 前言…………………….……………………1
1-1-1 有機發光二極體的歷史簡介……1
1-1-2 有機發光二極體顯示器的最新發 展......................................................2
1-2 研究動機與目的……………….......... 4
第二章 理論基礎與文獻回顧………..................... 7
2-1 有機發光二極體元件理論.............. 7
2-1-1 有機發光元件結構……………..7
2-1-2 有機發光元件常用材料………. 9
2-1-2-1 電洞注入與電洞傳輸材料.................................................... 9
2-1-2-2 電子傳輸材料......11
2-1-3 載子的注入、傳導與複合…….16
2-1-3-1 載子的注入........16
2-1-3-2 載子的傳輸........17
2-1-3-3 載子的複合........18
2-2 表面電漿子理論.......................21
2-2-1 表面電漿子..................21
2-2-2 金屬平面上的表面電漿子模式..22
2-3 微共振腔效應.........................30
2-4 有機發光元件的光學損失...............32
2-5 增進出光率的方法.....................33
2-5-1 減少不發光模式..............33
2-5-2 減少全反射..................33
2-5-3 減少波導效應................34
2-6 上發光有機發光元件...................39
2-6-1 上陽極發光有機發光元件......41
2-6-2 上陰極發光有機發光元件......43
第三章 實驗方法與步驟………………………………………..47
3-1 實驗流程………………………... .......47
3-2 實驗系統設計.........................48
3-2-1 高真空熱蒸鍍系統………......48
3-2-1-1 抽氣系統...........48
3-2-1-2 壓力監控系統.......48
3-2-1-3 薄膜厚度監控系統...48
3-2-1-4 系統加熱裝置.......49
3-2-2 氧電漿處理系統..............49
3-2-2-1 抽氣系統...........49
3-2-2-2 壓力監控系統.......49
3-2-2-3 流量監控系統.......50
3-2-2-4 電漿產生之電源供應器......................................................50
3-2-3 紫外/可見光分光光譜儀........50
3-2-4 光電子譜分析儀………………...50
3-2-5 有機發光元件量測系統………….51
3-3 實驗材料..............................51
3-3-1 基板材料.....................51
3-3-2 有機材料.....................52
3-3-3 無機材料.....................52
3-3-4 金屬材料.....................52
3-3-5 基板清洗溶劑與實驗用氣體.....53
3-4 實驗步驟..............................53
3-4-1 康寧玻璃基板濕式前處理之實驗步驟......................................................53
3-4-2 有機與無機薄膜蒸鍍...........54
3-5 元件特性分析與光譜之量測..............55
第四章 結果與討論………………………………………….....59
4-1 上發光有機發光元件製作…………………..59
4-1-1 前言……………………………….59
4-1-2 上陰極發光有機發光元件之陽極材料選擇………...............................................59
4-1-3 上陰極發光有機發光元件之陰極材料選擇.....................................................61
4-2 上陰極有機發光元件特性分析……………...63
4-2-1 上陰極結構:Al/ZnS…………....63
4-2-2 上陰極結構:Al/ZnS/Ag/ZnS.....65
4-2-3 上陰極結構:Al/ZnS/Ag/ZnS/Ag/ZnS.....................................72
4-2-4 上陰極結構:ZnS:Ag...........74
4-3 氧化鎳(NiO)薄膜改質反射陽極銀之表面……76
第五章 總結論..........................................96
參考文獻.................................................98
自述與著作..............................................105


表目錄

表1-1 各類型顯示器說明與其優缺點比較…………………….6


圖目錄

圖1-1 OLED、PLED與無機LED的效率進程圖……………….. 5
圖1-2 LCD剖面結構圖與各零件的光學穿透率…………….. 5
圖2-1 不同的有機發光二極體(OLEDs)結構與各層功能....12
圖2-2 具電洞阻擋層的OLED元件實例與工作原理………...12
圖2-3 常用的電洞傳輸材料與分子結構…………………...13
圖2-4 常用的電洞注入材料與分子結構…………………...14
圖2-5 常用的電子注入和傳輸材料與分子結構…………...15
圖2-6 元件中載子在低外加電壓與高外加電壓的注入機制.20
圖2-7 WM excitons和Frenkel excitons圖示和其特性描述………..............................................20
圖2-8 電荷密度在金屬表面上發生集體式電偶極振盪電場分量的示意圖…………........................................29
圖2-9 黑色曲線代表發生在空氣-銀(silver)表面上的電漿子的色散關係(dispersion relation)示意圖.………………………29
圖2-10 TPD/Alq3雙層元件中的波導效應損失百分比和各層的折射率…………………………………………………………........36
圖2-11 (a)低折射率光學改質層(silica aerogel layer)的工作原理,(b)在改質過的基板(左)和一般基板(右)塗佈上發光材料在UV光照射下的情況.……………………………………….........36
圖2-12 (a)增加玻璃基板的粗糙度(b)塗佈微球粒(c)覆蓋微透鏡…….……………………………………………………….....37
圖2-13 形狀化基板示意圖…………………………………...37
圖2-14 AAO膜SEM圖與元件結構……………………………….38
圖2-15 (a)傳統元件結構與發光情形(b)具有二維光子晶體的元件結構與發光情形……………………………………………......38
圖2-16 下發光元件與上發光元件結構配置圖……………….46
圖2-17 SONY出產的有機EL顯示器…………………………...46
圖3-1 高真空熱蒸鍍系統與氧電漿處理系統……………...56
圖3-2 紫外/可見光分光光譜儀(JASCO V-560)…………...57
圖3-3 光電子譜分析儀(AC-2) ..…………………………..57
圖3-4 有機發光元件量測系統(a)元件電流-電壓-輝度量測系統,(b)元件電致激發光光譜量測系統………………………...58
圖4-1 金、鎳、銀、鋁、p-type silicon等材料之反射度....................................................79
圖4-2 元件摻雜F4-TCNQ與未摻雜F4-TCNQ之元件電流密度特性圖…………………………………………………………........79
圖4-3 不同ZnS膜厚下之光學穿透度.……………………….80
圖4-4 陰極結構Al與Al/ZnS之元件亮度特性圖…………….80
圖4-5 陰極結構Al/ZnS薄膜在不同ZnS膜厚下之穿透度……81
圖4-6 陰極結構Al與Al/ZnS薄膜之反射度………………….81
圖4-7 上陰極結構Al/ZnS/Ag/ZnS在不同Ag厚度下的元件電流密度特性圖…………………………………………………........82
圖4-8 上陰極結構Al/ZnS/Ag/ZnS在不同Ag厚度下的元件亮度特性圖………………………………………………………........82
圖4-9 上陰極結構Al/ZnS/Ag/ZnS在不同Ag薄膜下之穿透度....................................................83
圖4-10 陰極結構Al/ZnS/Ag/ZnS之不同Ag薄膜之反射度……83
圖4-11 ZnS/Ag/ZnS在不同Ag膜厚下之薄膜電性圖………….84
圖4-12 上陰極發光元件不同Ag厚度的元件發光效率特性圖....................................................84
圖4-13 Al/ZnS/Ag/ZnS薄膜穿透度之模擬與實驗結果圖……85
圖4-14 Al 7nm上發光元件之不同Ag厚度的元件電流密度特性圖……………………………………………………………......85
圖4-15 Al 7nm上發光元件之不同Ag厚度的元件亮度特性圖....................................................86
圖4-16 Al 7nm之陰極結構Al/ZnS/Ag/ZnS在不同Ag厚度之穿透度……………………………………………………………......86
圖4-17 Al 7nm之陰極結構Al/ZnS/Ag/ZnS在不同Ag厚度之反射度……………………………………………………………......87
圖4-18 Al 7nm之上發光元件在不同Ag厚度下的元件電流效率特性圖…………………………………………………………........87
圖4-19 上陰極結構Al/ZnS/Ag/ZnS/Ag/ZnS之元件電流密度特性圖....................................................88
圖4-20 上陰極結構Al/ZnS/Ag/ZnS/Ag/ZnS之元件亮度特性圖…..................................................88
圖4-21 ZnS/Ag/ZnS/Ag/ZnS薄膜之穿透度……………………89
圖4-22 ZnS/Ag/ZnS/Ag/ZnS薄膜之反射度……………………89
圖4-23 上陰極結構ZnS:Ag之元件電流密度特性圖…………90
圖4-24 上陰極結構ZnS:Ag之元件亮度特性圖………………90
圖4-25 ZnS:Ag薄膜在不同厚度下之穿透度………………….91
圖4-26 ZnS:Ag薄膜之反射度………………………………..91
圖4-27 上陰極結構ZnS:Ag之元件電流效率特性圖………….92
圖4-28 Holy-only元件的電流密度特性圖……………………92
圖4-29 不同氧化鎳厚度下的元件電流密度特性圖………….93
圖4-30 不同氧化鎳厚度下的元件亮度特性圖……………….93
圖4-31 不同氧化鎳厚度下對元件亮度取對數圖…………….94
圖4-32 AC-2量測出來的氧化鎳功函數表示圖……………….95
[1] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science, 273, 884 (1996)
[2] P. Pope, H. P. Kallmann, and P. J. Magnante, Journal of Chemical Physics, 38, 2042 (1963).
[3] W. Helfrich, and W. G. Schneider, Physical Review Letters, 14, 229 (1965)
[4] D. F. Williams, and M. Schadt, Proceedings IEEE, 58, 476 (1970)
[5] C. W. Tang, and S. A. VanSlyke, Applied Physics Letters, 51, 913 (1987)
[6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990)
[7] M. J. Flynn, J. Kanicki, A. Badano, and W. R. Eyler, Imaging & Therapeutic Technology, 19, 1653 (1999)
[8] G. Mueller, Electroluminescence I-Semiconductor and Semimetals Vol. 64, Academic Press, San Diego, CA USA, 209 (2000)
[9] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, and P. A. Cahill, Applied Physics Letters, 66, 3618 (1995)
[10] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Physical Review B, 55, R656 (1997)
[11] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Applied Physics Letters, 80, 2517 (2002)
[12] H. Muratal, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi1, Materials Research Society Symposium Proceedings, 665, 227 (2001)
[13] M. Matsumura, T. Akai, and M. Saito, Japanese Journal of Applied Physics, 35, 3468 (1996)
[14] D. Troadec, G. Veriot, R. Antony, and A. Moliton, Synthetic Metals, 124, 49 (2001)
[15] D. Ammermann, A. Böhler, and W. Kowalsky, Annual report, Institut für Hochfrequenztechnik, TU Braunschweig, 48 (1995)
[16] A. L. Burin, and M. A. Ratner, Journal of Physical Chemistry A, 104, 4704 (2000)
[17] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L269 (1988)
[18] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L713 (1988)
[19] W. B. Im, H. K. Hwang, J. G. Lee, K. Han, and Y. Kim, Applied Physics Letters, 79, 1387 (2001)
[20] M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Applied Physics Letters, 68, 1787 (1996)
[21] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics, 4, 40 (1998)
[22] W. Rieß, H. Riel, P. F. Seidler, and H. Vestweber, Synth. Met., 99, 213 (1999)
[23] Y. Shirota, M. Kinoshita, and K. Okumoto, Proceedings SPIE, 4464, 203 (2002)
[24] M. Ikaia, S. Tokitob, Y. Sakamoto, T. Suzuki, and Y. Taga, Applied Physics Letters, 79, 156 (2001)
[25] 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001)
[26] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, Thin Solid Films, 33, 363 (2000)
[27] C. Adachi, K. Nagai, and N. Tamoto, Applied Physics Letters, 66, 2679 (1995)
[28] Y. Shirata, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Journal of Luminescence,. 72-74, 985 (1997)
[29] Y. Shirota, K. Okumoto, H. Inada, Synthetic Metals, 111-112, 387 (2000)
[30] J. Kido and Y. Iizumi, Chemistry Letters, 26, 963 (1997)
[31] H. Murata, Z. H. Kafafi, and M. Uchida, Applied Physics Letters, 80, 189 (2002)
[32] http://www.cam.ac.uk
[33] J. Kalinowski, Journal of Physics D: Applied Physics, 32, R179 (1999)
[34] U. Wolf, V. I. Arkhipov, and H. Bässler, Physical Review B, 59, 7507 (1999)
[35] S. Barth, P. Müller, H. Riel, P.F. Seidler, W. Rieß, H. Vestweber, U. Wolf , and H. Bässler, Synthetic Metals, 111-112, 327 (2000)
[36] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, New York, 379 (1999)
[37] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, Journal Applied Physics, 79, 7991 (1996)
[38]http://hackman.mit.edu
[39] H. Raether, Surface Plasmons (Springer , New York, 1988).
[40] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports 408, 131 (2005).
[41] D. A. Schultz, Current Opinion in Biotechnology 14, 13 (2003).
[42] M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[43] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Selected Topics Quantum Electron. 8, 839 (2002).
[44] S. Kawata, M. Ohtsu, and M. Irie ed. “Nano-Optics” (Springer, 2002).
[45] P. N. Prasad, “Nanophotonics” (Wiley, Hoboken, NJ, 2004).
[46] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501-1505 (2001).
[47] S. Kawata ed. “Near-Field Optics and Surface Plasmon Polaritons” (Springer, Berlin, 2001).
[48] J. Tominaga and D. P. Tsai ed., “Optical Nanotehcnologies - The Manipulation of Surface and Local Plasmons”, (Springer, Heidelberg, 2002).
[49] 何符漢、蔡定平、劉威志, 物理雙月刊 24期4卷, p. 558 (2002).
[50] 邱國斌、蔡定平, 物理雙月刊 25期3卷, p. 373 (2003).
[51] P. K Raychaudhuri , J. K. Madathil , J. D. Shore and S. A. VanSlyke, Journal of the SID, 12/3,315(2004)
[52] A . Dodabalapur , L. J. Rothberg, R. H. Jordan , T. M . Miller, R. E. Slusher, and Julia M. Phillips, Journal of Applied Physics, 80(12), 6954(1996)
[53] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 22, 396 (1997).
[54] N. K. Patel, S. Cinà, and J. H. Burroughes, IEEE J. Sel. Top. Quant., 8, 346 (2002).
[55] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, Adv. Mater., 13, 1149 (2001).
[56] H. Yokogawa, K. Kawano, M. Yokoyama1, T. Tsutsui, M. Yahiro, and Y. Shigesato, Mat. Res. Soc. Symp. Proc., 660, JJ5.19.1 (2001).
[57] S. Möller and S. R. Forrest, J. Appl. Phys., 91, 3324 (2002).
[58] Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. Hwan Cho, Y. C. Kim, and Y. R. Do, Appl. Phys. Lett., 82, 3779 (2003).
[59] Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, Adv. Mater., 15, 1214 (2003).
[60] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and Scherer, Appl. Phys. Lett., 63, 2174 (1993).
[61] A. Köhler, J. S. Wilson, and R. H. Friend, Adv. Mater., 14, 701 (2002).
[62] V. Bulovic, V. B. Khalfin , G. Gu, P. E. Burrows, Phys. Rev. B, 58, 3730(1998)
[63] J. J. Shianga, A.R. Duggal, J. Appl. Phys., 95, 2880(2004).
[64] S. Moller, S. R. Forrest, J. Appl. Phys., 91, 3324(2002)
[65] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Vendakesh, S. R. Forrest, and M.E. Thompson, Opt. Lett., 22,396(1997).
[66] M. H. Lu, J. C. Sturm, J. Appl. Phys., 91, 595(2002).
[67] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, Adv. Mater., 13,1149(2001)
[68] H. J. Peng, Y. L. Ho, X. J. Yu, H. S. Kwok, J. Appl. Phys.,96,1649(2004).
[69] Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, Y. H. Lee, Adv. Mater.,15,1214(2003)
[70] D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, and A. B. Holmes, Applied Physics Letters, 65, 2636 (1994)
[71] Tadashi ISHIBASHI_, Jiro YAMADA, Takashi HIRANO, Yuichi IWASE, Yukio SATO,Ryo NAKAGAWA, Mitsunobu SEKIYA, Tatsuya SASAOKA and Tetsuo URABE Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45, 4392 (2006)
[72] X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwith-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maenning, and K. Leo, Applied Physics Letters, 81, 922 (2002)
[73] C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, IEEE Transactions on Electron Devices, 51, 1207 (2004)
[74] L. S. Hung, and J. Madathil, Thin Solid Films, 410, 101 (2002)
[75] V. Bulovic´, P. Tian, P. E. Burrows, M. R. Gokhale, and S. R. Forrest,Applied Physics Letters, 70, 2954 (1997)
[76] T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf,
H. Neuner, E. Becker, H. H. Johannes, and W. Kowalskya,
Applied Physics Letters, 82, 284 (2003)
[77] T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl,E. Becker, H. H. Johannes, and W. Kowalsky, Applied Physics Letters,83, 5071 (2003)
[78] Se-W.Park , Jeong-M. Choi , Eugene Kim , Seongil Im , Applied Surface Science, 244,439-444,(2005)
[79] G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson,Applied Physics Letters, 68, 2606 (1996)
[80] L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Applied Physics Letters, 78, 544 (2001)
[81] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Applied Physics Letters, 83, 5127 (2003)
[82] H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, Applied Physics Letters, 82, 466 (2003)
[83] Han-Ki Kim , Kyu-Sung Lee , J. H. Kwon , Applied Physics Letters, 88, 012103 (2006)
[84] G.L. Ma , A.G. Xu , G.Z. Ran , Y.P. Qiao , B.R. Zhang , W.X. Chen , L. Dai , G.G. Qin , Thin Solid Films 496, 665(2006)
[85] Shufen Chen, Zhonghai Jie, Zhenyuan Zhao, Gang Cheng, Zhijun Wu, Yi Zhao,Baofu Quan, and Shiyong Liu, Xue Li, Wenfa Xie, Applied Physics Letter, 89, 043505(2006)
[86] J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Applied Physics Letters., 73, 729(1998)
[87] M.G. Mason, L.S. Hung, C.W. Tang, S.T. Lee, K.W. Wong, M. Wang,
J. Appl. Phys. 86, 1688 (1999)
[88] G. Leftheriotis, P. Yianoulis, D. Patrikios, Thin Solid Films, 306, 92(1997)
[89]G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, Solid State Ionics,136-137,655(2000)
[90]L. H. Smith, J.A. E. Wasey, W. L. Barnes, Applied Physics Letters,84,2986,(2004)
[91] H. Raether, Surface Plasmons, Springer-Verlag,Hamberg,1989
[92] D. Sarid, Phys. Rev. Lett.,47,1927(1981)
[93]S. Wedge, A. Giannattasio, W. L. Barnes, Organic Electroncs 8,136-137,(2007)
[94] R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, Applied Physics Letters, 84, 4614 (2004)
[95] M.G. Mason, L.S. Hung, C.W. Tang, S.T. Lee, K.W. Wong, M. Wang,
J. Appl. Phys. 86, 1688 (1999)
[96]K. Furukawa, Y. Terasaka, H. Ueda, M. Matsumura, Synth. Met.,91,99(1997)
[97] H. B. Michaelson, IBM J. Res. Dev. 22, 72 (1978)
[98] Chieh-Wei Chen, Ping-Yuan Hsieh, Huo-Hsien Chiang, Chun-Liang Lin, Han-Ming Wu, and Chung-Chih Wu, Appl. Phys. Lett.,83,5127(2003)
[99] I-Min Chan, Tsung-Yi Hsu, and Franklin C. Hong , Appl. Phys. Lett.,81,1899,(2002)
[100] H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films, 236, 27 (1993)
[101] J. Olivier, B. Servet, M. Vergnolle, M. Mosca, and G. Garry, Synth. Met., 122, 87 (2001).
[102] I. D. Parker, J. Appl. Phys., 75, 1656 (1994)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top