跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉桂伶
研究生(外文):Kuei-Ling Yeh
論文名稱:醣脂類生物界面活性劑-鼠李醣脂之醱酵生產
論文名稱(外文):Fermentative production of a glycolipid biosurfactant-rhamnolipid
指導教授:張嘉修張嘉修引用關係
指導教授(外文):Jo-Shu Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:76
中文關鍵詞:培養基最適化生物反應器生物界面活性劑鼠李醣脂反應曲面法
外文關鍵詞:Pseudomonas aeruginosamedium optimizationbiosurfactantBioreactor designresponse surface methodologyrhamnolipid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1047
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
由Pseudomonas aeruginosa 菌株所生產的生物界面活性劑-鼠李醣脂(rhamnolipid)共有六種不同的結構,其擁有類似的化學結構及表面活性,平均分子量為577。鼠李醣脂的臨界微胞濃度大約在50-65 mg/L,可以將水的表面張力從70 mN/m 降至30 mN/m。本研究使用由油污染土壤中篩選之本土菌株Pseudomonas aeruginosa EM1 來進行生物界面活性劑鼠李醣脂的醱酵生產。由NMR 及mass spectrometry 的分析可以確認EM1菌株生產之鼠李醣脂產物的化學結構為RL1 (MW=527) 與RL2(MW=673),且其擁有相當好的表面活性,臨界微胞濃度為24.8 mg/L,而臨界乳化指數為250-300 mg/L。探討不同碳源及氮源對鼠李醣脂產量的實驗中,發現最佳的碳源為葡萄糖或甘油(濃度分別為40 g/L)分別可以達到7.5 g/L 和4.9 g/L 的產量,而使用最佳氮源硝酸鈉(4.25 g/L)則可得到8.6 g/L 的產量。此外,碳氮源的最佳比值在使用不同的碳源時也會呈現不同的趨勢,當使用葡萄糖及甘油為碳源時,最佳碳氮比分別為26及52。為了更進一步的找出碳源及氮源的最佳濃度,本研究使用反應曲面法設計出二十組實驗來找尋葡萄糖、甘油及硝酸鈉的最佳濃度,最後得到當葡萄糖、甘油及硝酸鈉的濃度分別在30.5、18.1 和4.9 g/L 時可得最佳鼠李醣脂的產量為12.6 g/L。在醱酵槽的實驗中,發現消泡劑的添加會抑制鼠李醣脂的生產,而改良式的生物反應器可以控制醱酵中嚴重的發泡現象且得到較高的鼠李醣脂生產速率。
摘要: 鼠李醣脂,生物界面活性劑,Pseudomonas aeruginosa,生物反應器設計,培養基最適化,反應曲面法
Abstract
Rhamnolipid is a glycolipid biosurfactant produced by Pseudomonas aeruginosa strains. There are six types of rhamnolipids possessing similar chemical structure and surface activity with an average molecular weight (MW) of 577. Rhamnolipid can reduce surface tension of water from 72 mN/m to 30 mN/m with a critical micelle concentration of 50-65 mg/L. In this study, a newly isolated indigenous bacterial strain Pseudomonas aeruginosa EM1 originating from oil-contaminated site in southern Taiwan was used to develop effective technology for rhamnolipid production. Rhamnolipid produced by Pseudomonas aeruginosa EM1 has been characterized by NMR and mass spectrometry to confirm the chemical structure of the rhamnolipid product. The results indicated that the purified product was a mixture of RL1 (MW=527) and RL2 (MW=673). The critical micelle concentration and the critical emulsion index of the purified rhamnolipid were 24.81 mg/L and 250-300 mg/L, respectively. Different carbon and nitrogen sources were
examined for their effects on rhamnolipid production. The results show that the better rhamnolipid production 7.5 g/L and 4.9 g/L were obtained by using glucose or glycerol (both at 40 g/L) as the carbon substrate. Meanwhile, the
best nitrogen source for rhamnolipid production is sodium nitrate, giving a rhamnolipid yield of 8.6 g/L. Furthermore, the effect of carbon to nitrogen (C/N) ratio on rhamnolipid production was also studied. An optimal C/N ratio of 26 and 52 was obtained for glucose- and glycerol-based culture respectively by using sodium nitrate as the nitrogen source. In order to optimize the composition of fermentation, response surface methodology (RSM) was used to design 20 experiments to explore the best concentration of three critical components in the medium (i.e., glucose, glycerol, and NaNO3). The results of RSM analysis gave an optimal concentration of 30.5, 18.1, and 4.9 g/L for glucose, glycerol, and NaNO3, respectively, predicting a maximum RL yield of 12.6 g/L. In addition, fermentor studies showed that rhamnolipid production was inhibited by the addition of anti-foam agent. A modified bioreactor with foam collector and circulator was a better way to control the severe foaming, resulting a higher rhamnolipid production rate.
Keywords: Bioreactor design, biosurfactant, medium optimization, Pseudomonas aeruginosa, response surface methodology, rhamnolipid
Contents
Abstract (Chinese) I
Abstract (English) III
Acknowledgement V
Contents VII
List of Figures X
List of Tables XIII
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation and purpose 1
Chapter 2 Literature review 3
2-1 Surfactants 3
2-2 Biosurfactants 6
2-3 Rhamnolipid 11
2-3-1 Rhamnolipid structure and properties 11
2-3-2 Biosynthesis function of rhamnolipid 11
2-3-3 Determination of rhamnolipid concentration 14
2-3-4 Rhamnolipid purification 15
2-4 Rhamnolipid production 16
2-4-1 Effect of medium compositions and culture conditions 16
2-4-2 Bioreactor designs 17
2-5 Response surface methodology 19
Chapter 3 Materials and methods 21
3-1 Chemicals and materials 21
3-2 Equipment 23
3-3 Medium composition 25
3-4 Flask fermentation 26
3-4-1 Bacterial strain and preparation of seed culture 26
3-4-2 Procedures for exploring the effect of carbon sources 26
3-4-3 Procedures for exploring the effect of nitrogen sources 26
3-4-4 Procedures for exploring the optimal carbon to nitrogen ratio 27
3-4-5 Experimental design for optimizing concentration of carbon and nitrogen sources 27
3-4-6 Procedures for exploring the effect of yeast extract
concentration on rhamnolipid production 28
3-5 Fermentor experiments 28
3-5-1 Bioreactor with addition of anti-foam 28
3-5-2 Bioreactor with foam collector 29
3-6 Analytical methods and rhamnolipid purification 29
3-6-1 Determination of cell concentration 29
3-6-2 Determination of Rhamnolipid concentration 30
3-6-3 Surface tension assay 30
3-6-4 Determination of emulsification index 30
3-6-5 Rhamnolipid purification 31
3-7 Definition of terms in data analysis 31
Chapter 4 Results and discussion 34
4-1 Analysis of rhamnolipid structure 34
4-2 Characterization of surface activity of the purified rhamnolipid 39
4-3 The Effects of carbon and nitrogen source on rhamnolipid production 42

4-4 Effect of carbon to nitrogen (C/N) ratio on rhamnolipid production 48
4-5 Improving rhamnolipid production of by RSM experimental design 51
4-6 The effect of yeast extract on rhamnolipid production 59
4-7 Fermentor production of rhamnolipid 61
4-7-1 Batch rhamnolipid production in fermentor 61
4-7-2 The effect of anti-foam on rhamnolipid production (flask tests) 62
4-7-3 The modified bioreactor with foam collector and circulator 67
Chapter 5 Conclusions 70
References 71
Curriculum vitae A
Anna, L.M.S., Sebastian, G.V., Menezes, E.P., Alves, T.L.M., Santos, A.S., Jr, N.P., Freire, D.M.G., 2002. Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Braz. J. Chem. Eng. 19, 159-166.
Arino, S., Marchal, R., Vandecasteele, J.P., 1996. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl. Microbiol. Biotechnol. 45, 162-168.
Banat, I.M., Makkar, R.S., Cameotra, S.S., 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495-508.
Barber, W.P., Stuckey, D.C., 2000. Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1, denitrification. Wat. Res. 10, 2413-2422.
Batista, S.B., Mounteer, A.H., Amorim, F.R., Tótola, M.R., 2006. Isolation and characterization of biosurfactant/bioemulsifier- producing bacteria from petroleum contaminated sites. Bioresour. Technol. 97, 868-875.
Benincasa, M., Contiero, J., Manresa, M.A., Moraes, I.O., 2002. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food. Eng. 54, 283-288.
Box, G.E.P., Wilson, K.B., 1951. On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. Ser. B 13, 1-45.
Chayabutra, C., Wu, J., Ju, L.K., 2001. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and carbon substrates. Biotechnol. Bioeng. 72, 25-33.
Chen, C.C., Riadi, L., Suh, S.J., Ohman, D.E., Ju, L.K., 2005. Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J. Biotechnol. 117, 1-10.
Chen, C.Y., Chang, J.S., 2006. Feasibility strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int. J. Hydrogen Energy 31, 2345-2355.
Chen, F., Xia, Q., Ju, L.K., 2003. Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence. Appl. Environ. Microbiol. 69-11, 6715-6722.
Cooper, D.G., Goldenberg, B.G., 1987. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53, 224-229.
Desai, J.D., Banat, I.M., 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61, 47-64.
Desai, J.D., Banat, I.M., 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61, 47-64.
Dyke, M.I.V., Gulley, S.L., Lee, H., Trevors, J.T., 1993. Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J. Ind. Microbiol. 11, 163-170.
Garrett, R.H., Grisham C.M., 1999. Biochemistry 2nd Edition. Ginkel, S.V., Sung, S., Lay, J.J., 2001. Biohydrogen production as a function of pH and substrate concentration, Environ. Sci. Technol. 35, 4726-4730.
Guerra-Santos, L., Käppeli, O., Fiechter, A., 1984. Psedomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48, 301-305.
Hauser, G., Karnovsky, M.L., 1957. Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J. Biol. Chem. 224, 91-105.
Jeong, H.S., Lim, D.J., Hwang, S.H., Ha, S.D., Kong, J.Y., 2004. Rhamnolipid production by Pseudomonas aeruginosa immobilized in polyvinyl alcohol beads. Biotechnol. Lett. 26, 35-39.
Kim, H.S., Jeon, J.W., Kim, B.H., Ahn, C.Y., Oh, H.M., Yoon, B.D., 2006. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl. Microbiol. Biotechnol. 70, 391-396.
Koch, A.K., Käppeli, O., Fiechter, A., Reiser, J., 1991. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173-13, 4212-4219.
Lang, S., Wagner, F., 1987. Structure and properties of biosurfactants. In: Kosaric, N., Chairns, W.L., Gray, N.C.C. (eds) Biosurfactants and Biotechnology. 25, 21-47
Lang, S., Wullbrandt, D., 1999. Rhamnose lipids─biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51, 22-32.
Lee, Y., Lee, S.Y., Yang, J.W., 1999. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Biosci. Biotechnol. Biochem. 63-5, 946-947.
Lin, C.Y., Lay, C.H., 2004. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 29, 275-281.
Maier, R.M., Chavez, G.S., 2000. Pseudomonas aerugionsa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 54, 625-633.
Mata-Sandoval, J.C., Karns, J., Torrents, A., 2001. Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by Pseudomonas aeruginosa UG2. Microbiol. Res. 155, 249-256.
Matsufuji, M., Nakata, K., Yoshimoto, A., 1997. High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol. Lett. 19-12, 1213-1215.
Montgomery, D.C., 1991. Design and analysis of experiments. 3rd edition. John Wiley & Sons, New York.
Mulligan, C.N., 2005. Environmental applications for biosurfactants. Environ. Pollution 133, 183-198.
Mulligan, C.N., Eftekhari, F., 2003. Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 70-3, 269-279.
Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60-1, 371-380.
Nitschke, M., Costa, S.G.V.A.O., Contiero, J., 2005. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 21, 1593-1600.
Özdemir, G., Peker, S., Helvaci, S.S., 2004. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloid Surf. A-Physicochem. Eng. Asp. 234, 135-143.
Parra, J.L., Guinea, J., Manresa, M.R., Mercade, M.E., Comelles, F., Bosch, M.P., 1989. Chemical characterization and physicochemical behaviour of biosurfactants. J. Am. Oil Chem. Soc. 66, 141-145.
Rahman, K.S.M., Banat, I.M., Thahira, J., Thayumanavan, T.,
Lakshmanaperumalsamy, P., 2002. Bioremediation of gasoline
contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour. Technol. 81, 25-32.
Rahman, K.S.M., Rahman, T.J., McClean, S., Marchant, R., Banat, I.M., 2002. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog. 18, 1277-1281.
Reiling, H.E., Wyss, U.T., Santos, L.H.G., Hirt, R., Kappeli, O., Fiechter, A., 1986. Pilot plant production of rhamnolipid biosurfactant byPseudomonas aeruginosa. Appl. Environ. Microbiol. 51, 985-989.
Ron, E.Z., Rosenberg, E., 2001. Natural roles of biosurfactants. Environ. Microbiol. 3, 229-236.
Rosenberg, E., Ron, E.Z., 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52,154-162.
Sandoval, J.C.M., Karns, J., Torrents, A., 1999. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A 864, 211-220.
Santos, A.S., Sampaio, A.P.W., Vasquez, G.S., Anna, L.M.S., Jr, N.P., Freire, D.M.G., 2002. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 98-100, 1025-1035.
Sim, L., Ward, O., Li, Z.Y., 1997. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 19, 232-238.
Soberón-Chávez, G., Lépine, F., Déziel, E., 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68, 718-725.
Stokes, R., Evans, D.F., 1996. Fundamentals of interfacial engineering. 207-209.
Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., Kanzaki, H., 2007. Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresour. Technol. 98, 1149-1153.
Urum, K., Pekdemir, T., 2004. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57, 1139-1150.
Wei, Y.H., Chou, C.L., Chang, J.S., 2005. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J. 27, 146-154.
Wei, Y.H., Chu, I.M., 1998. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb. Technol. 22, 724-728.
Yeh, M.S., Wei, Y.H., Chang, J.S., 2006. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem. 41, 1799-1805.
Zhang, Y., Miller, R.M., 1992. Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58, 3276-3282.
Zukerberg, A., Diver, A., Peeri, Z., Gutnick, D.L., Rosenberg, E., 1979. Emulsan of Arthrobacter RAG-1: chemical and physical properties. Appl. Environ. Microbiol. 37, 414-420.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top