跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉航
研究生(外文):Chia-Hang Chang
論文名稱:藉由液態核磁共振的技術來探討室溫熔鹽/三氟乙醇-超離子的相變化和解離
論文名稱(外文):NMR Spectroscopic Studies of BMIPF6/CF3CH2OH Solutions—Phase-Changes and Dissociation of Hyper Anions Involving CF3 Groups
指導教授:王小萍
指導教授(外文):Shao-Pin Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:離子液體
外文關鍵詞:ionic liquid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PC對於離子液體所擁有的高解離能力,來自於提高其路易士酸性質對本性是路易士鹼的PC,被應用在三氟乙醇,將前端CH3改成CF3,可以預測到三氟乙醇將展現和PC依樣同時擁有路易士酸路易士鹼的性質,而可以提高導電度。
藉由分析陽離子和三氟乙醇的擴散速率求得DD值,可以看到改善在乙醇形成大的基團,產生較強的分解,三氟乙醇的性質利用19F、1H化學位移,得到(1)CF3和陽離子H4、H5形成超共軛大於對H2,因為立體效應的關係,而藉由19F遲緩時間的數據,三氟乙醇展現相變化,由一到兩各堆疊的離子對,和一個陰離子形成超陰離子的情形,因為溶劑而開始崩解,在繼續分解可得到自由的陰陽離子 。
藉由19F得到的擴散速率,所得到的DD(F)數值大於利用1H得到的DD(H)在濃度(c=0.25),這表示自由陰離子釋放出來的程度小於陽離子,而這個表示出陰離子形成超離子程度大於陽離子,當高濃度的時候(c=0.80),DD(F)轉變成小於DD(H),因為解離程度高,所以漸漸符合陽離子半徑大於陰離子。陰離子形成超離子,提供(1)陰離子擴散速率小於陽離子雖然半徑較小,(2)在三氟乙醇和離子液體的導電度大於在乙醇。
The high ionicity of ionic liquids in propylene carbonate (PC) has been found, through 19F NMR chemical shift, arising from the acidic character of the propylene framework in the basic PC organic molecule. We have applied this “base-acid dual property argument to increase the molar conductivity in BMIPF6/CH3CH2OH solutions by fluorinations of the methyl hydrogens. The fluorinated ethanol, CF3CH2OH, has been thus selected as the co-solvent in use with BMIPF6 ionic liquid.

Through analysis of the diffusion coefficient ratios acquired by 1H resonance of CF3CH2OH to that of BMI cation, one finds pleasantly improved decomposition of the clusters in CH3CH2OH. The basic character of CF3CH2OH has been identified by 19F and 1H chemical shift variations. It is interesting that (1)hyperconjugation of the solvent’s CF3-donor group prefers H4/H5 of BMI cation to H2, which can be explained by the steric hindrance of PF6 anion; (2) the various-temperature 19F spin-lattice relaxation times (T1) of CF3 show phase change, e.g. (BMIPF6)( BMIPF6)PF6��( BMIPF6)PF6 +BMI+ +PF6 followed by e.g. (BMIPF6)PF6�袈F6 +BMI +PF6, in the temperature 310-320K. This phase change can be rationalized by the slippery of the BMI cation from (BMIPF6)nPF6 hyper anions, n is more likely 1 or 2 in this research.

More significantly the diffusion coefficient ratios obtained by 19F signals, DD(F), reveal a larger value than those acquired by 1H signals, DD(H), for the ��=0.25 solution at various temperature. The larger DD-value of former experiments reveal that dissociation of PF6 anion is less than that of BMI cation. This result strongly suggests that hyper anions as stated above is more abundant than the hyper cations. It is very informative that DD(F) turns smaller than DD(H) especially at high concentration of CF3CH2OH. This reveals that the above-sated phase change occur at room temperature for the ��=0.80 solution. Vanishing of hyper anions allows the DD-value more close to the value of ion radius (rBMI>rPF6) to solvent radius.
The hyper anion argument can (1)supply an alternative explanation of the smaller diffusion coefficient measured for PF6 despite it’s radius is smaller than the cation; (2)correlate the molar conductivity data with diffusion coefficient data acquired for BMIPF6 in CF3CH2OH, as well as those acquired for BMIPF6 in CH3CH2OH.
表目錄…………………………………………………………………iii
圖目錄………………………………………………………………… iv
第一章 序論……………………………………………………………1
第二章 理論背景………………………………………………………5
2-1 離子液體………………………………………………5
2-1-1 離子液體的簡介……………………………………5
2-1-2 離子液體的定義……………………………………8
2-1-3 離子液體的性質……………………………………10
2-2 核磁共振………………………………………………16
2-2-1 核磁共振的歷史背景………………………………16
2-2-2 核磁共振的基本原理………………………………18
2-2-3 吸收機制……………………………………………22
2-2-4 遮蔽與化學位移……………………………………23
2-2-5 核磁共振的遲緩機制………………………………24
2-2-6 擴散係數……………………………………………27
第三章 實驗過程………………………………………………………30
3-1 藥品……………………………………………………30
3-2 離子液體的合成方法…………………………………30
3-2-1 BMIC的製備…………………………………………30
3-2-2 BMI-PF6的合成方法………………………………32
3-3 藥品配置………………………………………………32
3-4 實驗裝置與儀器………………………………………33
3-5 實驗原理與方法………………………………………33
3-5-1 擴散係數的測量方法………………………………33
3-5-2 遲緩時間的測量……………………………………35
3-5-3 黏度與密度以及導電度的測量方法………………37
第四章 結果與討論……………………………………………………41
4-1 化學位移的影響………………………………………41
4-1-1具極性的非質子酸有機溶劑………………………44
4-1-2 具極性的質子酸有機溶劑………………………45
4-1-3 化學位移 總結……………………………………49
4-2遲緩時間的影響………………………………………50
4-3 遲緩時間的影響………………………………………59
4-4 導電度…………………………………………………72
4-5 相變化…………………………………………………75
第五章 結論……………………………………………………………80
1.P. Stilbs, Prog. NMR Spectrosc,. 1987, 19, 1-45.
2. P. Wassercheid, T. Welton, Editor “ Ionic Liquids in Synthesis”, 2002, Wiley- VCH Verlag GmbH & Co. KGaA.
3.I. N.Levine, Physical Chemistry, McGraw- Hill, New York, 1978, Chap. 16.
4.P. Walden, Bull. Acad. Imper. Sci, 1914, 1800.
5.F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 1951, 98, 203-206.
6.F. H. Hurley, T. P. Wier, Jr., J. Electrochem. Soc., 1951, 98, 207-212.
7.J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
8.Freemantle M. Chem. Eng. News March 30, 1998, 32.
9.E. I. Cooper, O’Sullivan, E. J. M., “Proceedings of the eighth International Symposium of Molten Salts”, The Electro- chemical Society: Pennington, NJ, 1992, Proceeding Vol. 92-12, pp 384-396.
10.J. S. Wilkes, M. J. Zaworodtko, J. Chem. Soc., Chem. Commun., 1992, 13, 965-967.
11.P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza, J. Dupont, Polyhedron, 1996, 15, 1217
12.J. S. Wilkes, Green Chem., 2002, 4, 73
13.R. Hagiwara, Y. Ito, J. Fluorine Chem., 2000, 105, 221-227.
14.Peter wasserscheid, Wilhelm Keim, Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
15.J. S. Wilkes, J. A. Levisky, R. A. Wilson, C.L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
16.W.T. Ford, R. J. Hart, J. Org. Chem., 1973, 38, 3916-3918.
17.K. R. Seddon, Kinet. Catal. Engl. Transl., 1996, 37, 693-697.
18.P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178.
19.A. Elaiwi, P. B. Hitchcock, K.R. Seddon, N. Srinivasan, Y. –M. Tan, T. Welton, J.A. Zora, J. Chem. Soc. Dalton Trans., 1995, 3467-3472.
20.M. L. Mutch, J. S. Wilkes, Proc. Electrchem.Soc., 1998, 98, 254-260.
21.P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178
22.A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J.Phys. Chem., 1984, 88, 2614-2612
23.J. R. Sanders, E. H. Ward, C. L. Hussey, J. Electrochem. Soc., 1986, 133, 325-330.
24.K. R. Seddon, A. Stark, M.-J. Torres, Pure Appl. Chem., 2000, 72, 2275.
25.J. Dufourcq, J. F.Faucon, E. Breard, M. Pezolet, M. Tessier, P. E. Bougis, J. Van Rietschotenm, P. Delori, H. Rochat, Toxicon. 1982, 20, 165.
26.F. Block, W. W. Hansen, W. Packard, Phys. Rev. 1946, 69, 127
27.E. M. Purcell, H. C. Torrey, R. V. Pound, Phys. Rev. 1946, 69, 37
28.楊淑岐,余靖譯 科儀新知 1999, 6, 32
29.甘魯生 電子月刊 1998, 36, 55.
30.J. T. Arnold, S. S. Dharmatti, M. E. Packard, J. Chem. Phy. 1951, 19, 507.
31.黃紹光 諾貝爾的榮耀-化學桂冠,1999,天下遠見.
32.D. Yang, R. Konrat, L. E. Kay, J. Am. Chem. Soc. 1997, 119, 11938.
33.D. Yang, L. E. Kay, J. Am. Chem. Soc. 1999, 121, 2571.
34.K. J. klabunde and D. J. Burton; J.Am. Chem. Soc., 1972, 94, 5985.
35.H. J. V. Tyrrell, K.R. Harris, Diffusion in Liquids, Butterworths, London, 1984.
36.E. L. Cluster, Diffusion-Mass Transfer in Fluid Systems, Cambridge Univeristy Press, Cambridge, 1984.
37.W. S. Price, Concepts Magn. Reson., 1997, 9, 299.
38.W. S. Price, Concepts Magn. Reson., 1998, 10, 197.
39.U. Matenaar, J. Richter, and M. D. Zeidler, J. Magn. Reson. A, 1996, 122, 72.
40.K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Solid State Ionics, 1998, 107, 1.
41.K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B, 1999, 103, 519.
42.K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Electrochim. Acta, 2000, 45, 1313.
43.Y. Aihara, S. Arai, K. Hayamizu, Electrochim. Acta, 2000, 45, 1321.
44.F. C. Gozzo, L. S. Santos, R. Augusti, C. S. Consorti, J. Dupont, M. N. Eberlin, Chem. Eur. J., 2004, 10, 6187-6193.
45.J. R. Sanders, in ” An Investigations of Transport properties and Ion Association in Room Temperature Haloaluminate Molten Salt ”, Ph.D. Dissertation, The University of Mississippi, 1987
46.Allan D. Headley and Nichole M. Jackson, J. Phys. Org. Chem,. 2002; 15: 52-55.
47.Allen D. Headley, S.R.S. Saibabu Kotti, Jaewook Nam and Kunyu Li, J. Phys. Org. Chem., 2005; 18: 1018-1022.
48.Shae-Tao L., Mei-Fang D., Cha-Wen C., and Sue-Sing L.,Tetrahedron, 2004; 60: 9441-9446.
49.A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon, T. Welton, Proc. 8th International Symposium on Molten Salts, vol. 92-16. The electrochemical Society: Pennington, NJ, 1992, 98.
50.A. D. Headley, N. M. Jaskson, J. Phy. Org. Chem., 2002,15, 52-55.
51.T. umecky, M. Kanakuto, Y. Ikushima, Fluid Phase Equilibria, 2005, 228-229, 329-333.
52.A. Noda, K. Hayamizu and M. Watanabe, J. Phys. Chem. B, 2001; 105: 4603-4610.
53.H. Tokuda, K. Hayamizu, K. Ishii, M.. A. B. Susan, and M. Watanabe, J. Phys. Chem. B, 2004; 108: 16593-16600.
54.H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. Susan, and M. Watanabe, J. Phys. Chem. B, 2005; 109: 6103-6110.
55.H. Tokuda, K. Ishii, M. A. B. Susan, S. Tsuzuki, K. Hayamizu and M. Watanabe, J. Phys. Chem. B, 2006; 110: 2833-2839.
56.T. Umecky et al., Fluid Phase Equilibria, 2005, 228-229, 329-333.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top